cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A077794 Odd integers k such that 10^k - 1 - 10^((k-1)/2) is a prime of the form 9...989...9, called a palindromic wing prime or a near-repdigit palindromic prime.

Original entry on oeis.org

53, 757, 2493, 3597, 5835, 46069, 95019, 104281, 134809
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
The corresponding primes have a(n) digits all of which are '9's except for the middle digit which is an '8'. They are too large to be listed in a sequence on their own, cf. examples. See A077775-A077798 and A107123-A107127 for palindromic wing/near-repdigit primes with other digits. - M. F. Hasler, Mar 03 2019
1888529 is a term but its position is not known. - Jeppe Stig Nielsen, Jan 12 2024
a(10) > 600000. - Serge Batalov, Jan 17 2024

Examples

			a(1) = 53 corresponds to the 53-digit prime
  p = 99999999999999999999999999899999999999999999999999999.
a(2) = 757 corresponds to p = (10^757 - 1) - 10^378 = 99...99899...99.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[10^n - 1*10^Floor[n/2] - 1], Print[n]], {n, 3, 104300, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
  • PARI
    is(n)=bittest(n,0)&&ispseudoprime(10^n-1-10^(n\2))
    forstep(n=1,oo,2,is(n)&&print1(n",")) \\ M. F. Hasler, Mar 03 2019

Formula

a(n) = 2*A183187(n) + 1.

Extensions

a(9) from PWP table, added by Patrick De Geest, Nov 05 2014

A077795 Numbers k such that (10^k - 1)/9 + 8*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

3, 9, 53, 375, 453, 1749, 26619, 68033, 85179
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(10) > 400000. - Robert Price, Jan 30 2025

Examples

			9 is a term because (10^9 - 1)/9 + 8*10^4 = 111191111.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Formula

a(n) = 2*A107649(n) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 30 2018
a(8)-a(9) from Robert Price, Jan 30 2025

A077796 Numbers k such that 7*(10^k - 1)/9 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

3, 5, 17, 39, 41, 425, 561, 1775, 2043, 11031, 16233, 23705
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(13) > 2*10^5. - Robert Price, Jan 19 2016

Examples

			17 is a term because 7*(10^17 - 1)/9 + 2*10^8 = 77777777977777777.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(7*10^n + 18*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 23800, 2}] (* Robert G. Wilson v, Dec 16 2005 *)

Formula

a(n) = 2*A183183(n) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 31 2018

A077797 Numbers k for which there exist k-digit palindromic wing primes (a.k.a. near-repdigit palindromic primes) of the general form r*(10^k - 1)/9 + (m-r)*10^floor(k/2) where k is the number of digits (an odd number > 1), r is the repeated digit, and m (different from r) is the middle digit.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 35, 39, 41, 45, 47, 53, 59, 63, 65, 67, 73, 79, 81, 87, 91, 109, 117, 119, 123, 139, 155, 159, 171, 177, 181, 185, 189, 195, 209, 225, 231, 233, 237, 259, 321, 325, 337, 339, 355, 363, 371, 375, 397, 425, 453
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Extensions

Name edited by Jon E. Schoenfield, Nov 04 2018

A183175 Numbers k such that (10^(2k+1) + 6*10^k - 1)/3 is prime.

Original entry on oeis.org

1, 2, 17, 79, 118, 162, 177, 185, 240, 824, 1820, 2354, 134811
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

a(13) > 10^5. - Robert Price, Apr 03 2016

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 6*10^n - 1)/3], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((10^(2*n+1)+6*10^n-1)/3) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077784(n) - 1)/2.

Extensions

a(13) from Robert Price, Aug 03 2024

A183176 Numbers k such that (10^(2k+1) + 12*10^k - 1)/3 is prime.

Original entry on oeis.org

1, 3, 7, 11, 13, 17, 29, 31, 33, 77, 933, 1555, 11758, 117707
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

a(14) > 100000. - Robert Price, Dec 29 2016

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 12*10^n - 1)/3], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((10^(2*n+1)+12*10^n-1)/3) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077790(n) - 1)/2.

Extensions

a(14) from Robert Price, Oct 30 2023

A183177 Numbers n such that (10^(2n+1)+15*10^n-1)/3 is prime.

Original entry on oeis.org

1, 7, 85, 94, 273, 356, 1077, 1797, 6758, 30232
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

a(11) > 10^5. - Robert Price, Apr 21 2016

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 15*10^n - 1)/3], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((10^(2*n+1)+15*10^n-1)/3) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077792(n)-1)/2.

Extensions

a(10) from Robert Price, Apr 21 2016

A183178 Numbers k such that 7*(10^(2*k+1)-1)/9 - 5*10^k is prime.

Original entry on oeis.org

0, 1, 3, 7, 10, 12, 480, 949, 1945, 7548, 8923
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

Original name: Numbers n such that (7*10^(2n+1)-45*10^n-7)/9 is prime.
a(12) > 10^5. - Robert Price, Nov 02 2015

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(7*10^(2n + 1) - 45*10^n - 7)/9], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((7*10^(2*n+1)-45*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077777(n-1)-1)/2 for n>1.

Extensions

Name edited and a(1) = 0 inserted by M. F. Hasler, Feb 07 2020

A183179 Numbers n such that 7*(10^(2n+1)-1)/9 - 3*10^n is prime.

Original entry on oeis.org

2, 3, 6, 23, 36, 69, 561, 723, 3438, 4104, 9020, 13977, 19655, 32400
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

Original name: Numbers n such that (7*10^(2n+1)-27*10^n-7)/9 is prime.
a(15) > 10^5. - Robert Price, Nov 23 2015

References

  • C. Caldwell and H. Dubner, The near repdigit primes A(n-k-1)B(1)A(k), especially 9(n-k-1)8(1)9(k), Journal of Recreational Mathematics, Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(7*10^(2n + 1) - 27*10^n - 7)/9], Print[n]], {n, 3000}]
  • PARI
    for(n=1, 1e3, if(ispseudoprime((7*10^(2*n+1)-27*10^n-7)/9), print1(n, ", "))) \\ Altug Alkan, Nov 23 2015

Formula

a(n) = (A077781(n)-1)/2.

Extensions

a(14) from Robert Price, Nov 23 2015

A183180 Numbers k such that (7*10^(2k+1) - 18*10^k - 7)/9 is prime.

Original entry on oeis.org

0, 1, 7, 13, 58, 129, 253, 1657, 2244, 2437, 7924, 9903, 11899, 18157, 18957, 23665, 105609
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

a(17) > 10^5. - Robert Price, Jun 23 2017
0 could be considered part of this sequence since the formula evaluates to 5 which is a degenerate form of the near-repdigit palindrome 777...77577...777 with 0 occurrences of the digit 7. - Robert Price, Jun 23 2017

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(7*10^(2n + 1) - 18*10^n - 7)/9], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((7*10^(2*n+1)-18*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077785(n) - 1)/2.

Extensions

a(16) from Robert Price, Jun 23 2017
a(17) from Robert Price, Oct 12 2023
Previous Showing 31-40 of 46 results. Next