cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A183181 Numbers k such that (7*10^(2*k+1) - 9*10^k - 7)/9 is prime.

Original entry on oeis.org

4, 5, 8, 11, 1244, 1685, 2009, 14657, 15118, 20332, 50830, 75062
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(7*10^(2n + 1) - 9*10^n - 7)/9], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((7*10^(2*n+1)-9*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077788(n) - 1)/2.

Extensions

a(10) from Robert Price, Oct 07 2023
a(11) from Robert Price, Oct 17 2023
a(12) from Robert Price, Dec 06 2023

A183182 Numbers k such that (7*10^(2*k+1) + 9*10^k - 7)/9 is prime.

Original entry on oeis.org

1, 3, 39, 54, 168, 240, 5328, 6159, 24675, 52227, 113887
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(7*10^(2n + 1) + 9*10^n - 7)/9], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((7*10^(2*n+1)+9*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077793(n) - 1)/2.

Extensions

a(9) from Robert Price, Oct 07 2023
a(10) from Robert Price, Oct 30 2023
a(11) from Robert Price, Aug 03 2024

A183183 Numbers n such that (7*10^(2n+1)+18*10^n-7)/9 is prime.

Original entry on oeis.org

1, 2, 8, 19, 20, 212, 280, 887, 1021, 5515, 8116, 11852
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

Comments

a(13) > 10^5. - Robert Price, Jan 19 2016

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(7*10^(2n + 1) + 18*10^n - 7)/9], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime((7*10^(2*n+1)+18*10^n-7)/9) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077796(n)-1)/2.

A183185 Numbers n such that 10^(2n+1)-5*10^n-1 is prime.

Original entry on oeis.org

14, 22, 36, 104, 1136, 17864, 25448
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[10^(2n + 1) - 5*10^n - 1], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime(10^(2*n+1)-5*10^n-1) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077782(n)-1)/2.

A183186 Numbers k such that 10^(2k+1) - 4*10^k - 1 is prime.

Original entry on oeis.org

88, 112, 198, 622, 4228, 10052, 55862
Offset: 1

Views

Author

Ray Chandler, Dec 28 2010

Keywords

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[10^(2n + 1) - 4*10^n - 1], Print[n]], {n, 3000}]
  • PARI
    is(n)=ispseudoprime(10^(2*n+1)-4*10^n-1) \\ Charles R Greathouse IV, Jun 13 2017

Formula

a(n) = (A077786(n) - 1)/2.

A077787 Numbers k such that (10^k - 1)/9 + 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).

Original entry on oeis.org

21, 29, 81, 119, 321, 825, 1121, 2579, 3693
Offset: 1

Views

Author

Patrick De Geest, Nov 16 2002

Keywords

Comments

Prime versus probable prime status and proofs are given in the author's table.
a(10) > 4*10^5. - _Robert Price, Jan 23 2025

Examples

			21 is a term because (10^21 - 1)/9 + 5*10^10 = 111111111161111111111.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[(10^n + 45*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 4000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)

Formula

a(n) = 2*A107126(n) + 1.

Extensions

Name corrected by Jon E. Schoenfield, Oct 31 2018
Previous Showing 41-46 of 46 results.