cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A155877 Sums of three Fermat numbers.

Original entry on oeis.org

9, 11, 13, 15, 23, 25, 27, 37, 39, 51, 263, 265, 267, 277, 279, 291, 517, 519, 531, 771, 65543, 65545, 65547, 65557, 65559, 65571, 65797, 65799, 65811, 66051, 131077, 131079, 131091, 131331, 196611, 4294967303, 4294967305, 4294967307
Offset: 1

Views

Author

Jonathan Vos Post, Jan 29 2009

Keywords

Examples

			a(1) = 3 + 3 + 3 = 9.
a(2) = 3 + 3 + 5 = 11.
a(3) = 3 + 5 + 5 = 13.
a(4) = 5 + 5 + 5 = 15.
a(5) = 3 + 3 + 17 = 23.
a(6) = 3 + 5 + 17 = 25.
a(7) = 5 + 5 + 17 = 27.
a(8) = 3 + 17 + 17 = 37.
a(9) = 5 + 17 + 17 = 39.
a(10) = 17 + 17 + 17 = 51.
a(11) = 3 + 3 + 257 = 263.
		

Crossrefs

Formula

{(2^(2^a) + 1) + (2^(2^b) + 1) + (2^(2^c) + 1)} = {A000215(a) + A000215(b) + A000215(c)}.

Extensions

More terms from R. J. Mathar, Feb 06 2009

A275379 Number of prime factors (with multiplicity) of generalized Fermat number 6^(2^n) + 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 3, 7, 3, 5
Offset: 0

Views

Author

Arkadiusz Wesolowski, Jul 25 2016

Keywords

Examples

			b(n) = 6^(2^n) + 1.
Complete Factorizations
b(0) = 7
b(1) = 37
b(2) = 1297
b(3) = 17*98801
b(4) = 353*1697*4709377
b(5) = 2753*145601*19854979505843329
b(6) = 4926056449*447183309836853377*28753787197056661026689
b(7) = 257*763649*50307329*3191106049*2339340566463317436161*
       2983028405608735541756929*18247770097021321924017185281
b(8) = 18433*
       69615986569139423375849495295909549956813828853888948633601*P137
b(9) = 80897*3360769*12581314681802812884728041373153281*
       3513902440204553274892072241244613302018049*P311
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeOmega[6^(2^n) + 1], {n, 0, 6}] (* Michael De Vlieger, Jul 26 2016 *)
  • PARI
    a(n) = bigomega(factor(6^(2^n)+1))

Formula

a(n) = A001222(A078303(n)). - Felix Fröhlich, Jul 25 2016

Extensions

a(8) was found in 2001 by Robert Silverman
a(9) was found in 2007 by Nestor de Araújo Melo
Previous Showing 11-12 of 12 results.