cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A116429 The number of n-almost primes less than or equal to 9^n, starting with a(0)=1.

Original entry on oeis.org

1, 4, 26, 181, 1095, 6416, 35285, 187929, 973404, 4934952, 24628655, 121375817, 592337729, 2868086641, 13798982719, 66043675287, 314715355786, 1494166794434, 7071357084444, 33374079939405
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 9^n], {n, 13}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(9^n, n)); \\ Daniel Suteu, Jul 10 2023

Extensions

a(14)-a(16) from Donovan Johnson, Oct 01 2010
a(16) corrected and a(17)-a(19) from Daniel Suteu, Jul 10 2023

A116431 The number of n-almost primes less than or equal to 12^n, starting with a(0)=1.

Original entry on oeis.org

1, 5, 48, 434, 3695, 29165, 218283, 1569995, 10950776, 74621972, 499495257, 3297443264, 21533211312, 139411685398, 896352197825, 5730605551626, 36465861350230
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, 12^n], {n, 12}]
  • PARI
    almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
    a(n) = if(n == 0, 1, almost_prime_count(12^n, n)); \\ Daniel Suteu, Jul 10 2023
    
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def A116431(n):
        if n<=1: return 4*n+1
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(12**n//prod(c[1] for c in a))-a[-1][0] for a in g(12**n,0,1,1,n))) # Chai Wah Wu, Sep 28 2024

Extensions

a(13)-a(14) from Donovan Johnson, Oct 01 2010
a(15)-a(16) from Daniel Suteu, Jul 10 2023

A116432 The number of n-almost primes less than or equal to e^n, starting with a(0)=1.

Original entry on oeis.org

1, 1, 2, 4, 5, 7, 12, 18, 24, 37, 54, 74, 107, 159, 218, 315, 450, 634, 888, 1269, 1782, 2496, 3520, 4933, 6899, 9681, 13555, 18888, 26407, 36855, 51352, 71526, 99654, 138608, 192708, 267833, 372107, 516420, 716816, 994191, 1378195, 1909694
Offset: 0

Views

Author

Robert G. Wilson v, Feb 10 2006

Keywords

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ AlmostPrimePi[n, E^n], {n, 42}]

A116433 Consider the array T(r,c) where is the number of c-almost primes less than or equal to r^c, r >= 1, c >= 0. Read the array by antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 3, 1, 0, 1, 3, 6, 5, 1, 0, 1, 3, 9, 13, 8, 1, 0, 1, 4, 13, 30, 34, 14, 1, 0, 1, 4, 17, 50, 90, 77, 23, 1, 0, 1, 4, 22, 82, 200, 269, 177, 39, 1, 0, 1, 4, 26, 125, 385, 726, 788, 406, 64, 1, 0, 1, 5, 34, 181, 669, 1688, 2613, 2249, 887, 103, 1, 0, 1, 5
Offset: 0

Views

Author

Keywords

Examples

			The array begins:
  0 0 0 0 0 0 0 0 0 0 0
  1 1 1 1 1 1 1 1 1 1 1
  1 2 3 5 8 14 23 39 64 103 169
  1 2 6 13 34 77 177 406 887 1962 4225
  1 3 9 30 90 269 788 2249 6340 17526 47911
T(3,2)=3 because there are 3 2-almost primes <= 3^2 = 9, namely 4, 6, and 9 (see A001358).
		

Crossrefs

Programs

  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Table[ If[k == 0, 1, AlmostPrimePi[n - k + 1, k^(n - k + 1)]], {n, 0, 7}, {k, n, 0, -1}] // Flatten

Extensions

NAME corrected by R. J. Mathar, Jun 20 2021

A376479 Array read by antidiagonals: T(n,k) is the index of prime(k)^n in the numbers with n prime factors, counted with multiplicity.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 9, 5, 1, 5, 17, 30, 8, 1, 6, 40, 82, 90, 14, 1, 7, 56, 328, 385, 269, 23, 1, 8, 90, 551, 2556, 1688, 788, 39, 1, 9, 114, 1243, 5138, 18452, 7089, 2249, 64, 1, 10, 164, 1763, 15590, 44329, 126096, 28893, 6340, 103, 1, 11, 253, 3112, 24646, 179313, 361249, 827901, 115180, 17526
Offset: 1

Views

Author

Robert Israel, Sep 24 2024

Keywords

Comments

T(n,k) is the number of numbers j with n prime factors, counted with multiplicity, such that j <= prime(k)^n.

Examples

			T(2,3) = 9 because the third prime is 5 and 5^2 = 25 is the 9th semiprime.
		

Crossrefs

Cf. A001222, A078843 (second column), A078844 (third column), A078845 (fourth column), A078846 (fifth column), A128301 (second row), A128302 (third row), A128304 (fourth row).

Programs

  • Maple
    T:= Matrix(12,12):
    with(priqueue);
    for m from 1 to 12 do
      initialize(pq);
      insert([-2^m, [2$m]],pq);
      k:= 0:
      for count from 1 do
        t:= extract(pq);
        w:= t[2];
        if nops(convert(w,set))=1 then
          k:= k+1;
          T[m,k]:= count;
          if m+k = 13 then break fi;
        fi;
        p:= nextprime(w[-1]);
        for i from m to 1 by -1 while w[i] = w[m] do
          insert([t[1]*(p/w[-1])^(m+1-i),[op(w[1..i-1]),p$(m+1-i)]],pq);
    od od od:
    seq(seq(T[i,s-i],i=1..s-1),s=2..13)
Previous Showing 11-15 of 15 results.