A078947
Primes p such that the differences between the 5 consecutive primes starting with p are (2,4,6,6).
Original entry on oeis.org
41, 641, 1091, 4001, 9461, 26681, 26711, 44531, 79811, 103991, 110921, 112571, 172421, 223241, 276821, 289841, 290021, 317771, 373181, 381371, 434921, 450881, 493121, 602081, 678761, 788351, 834131, 907211, 974861, 1076501, 1081121, 1097891, 1200371, 1409531, 1426151
Offset: 1
641 is in the sequence since 641, 643 = 641 + 2, 647 = 641 + 6, 653 = 641 + 12 and 659 = 641 + 18 are consecutive primes.
-
Select[Partition[Prime[Range[50000]], 5, 1], Differences[#] == {2, 4, 6, 6} &][[;;, 1]] (* Amiram Eldar, Feb 21 2025 *)
-
list(lim) = {my(p1 = 2, p2 = 3, p3 = 5, p4 = 7); forprime(p5 = 11, lim, if(p2 - p1 == 2 && p3 - p2 == 4 && p4 - p3 == 6 && p5 - p4 == 6, print1(p1, ", ")); p1 = p2; p2 = p3; p3 = p4; p4 = p5);} \\ Amiram Eldar, Feb 21 2025
A286891
Initial primes of 6 consecutive primes with 5 consecutive gaps 10, 8, 6, 4, 2.
Original entry on oeis.org
41203, 556243, 576193, 715849, 752263, 859249, 891799, 1107763, 1191079, 1201999, 1210369, 1510189, 1601599, 1893163, 2530963, 2678719, 2881243, 3257689, 3431479, 3545263, 3792949, 3804919, 4041109, 4479463, 4867309
Offset: 1
Prime(4313..4318) = {41203, 41213, 41221, 41227, 41231, 41233} and 41203 + 10 = 41213, 41213 + 8 = 41221, 41221 + 6 = 41227, 41227 + 4 = 41231, 41231 + 2 = 41233.
Also, prime(68287..68292) = {859249, 859259, 859267, 859273, 859277, 859279} and 859249 + 10 = 859259, 859259 + 8 = 859267, 859267 + 6 = 859273, 859273 + 4 = 859277, 859277 + 2 = 859279.
-
P:=Filtered([1..20000000],IsPrime);; I:=Reversed([2,4,6,8,10]);;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4]]);;
P3:=List(Positions(P2,I),i->P[i]);
-
K:=10^7: # to get all terms <= K.
Primes:=select(isprime,[seq(i,i=3..K+30,2)]): Primes[select(t->[Primes[t+1]-Primes[t], Primes[t+2]-Primes[t+1], Primes[t+3]-Primes[t+2], Primes[t+4]-Primes[t+3], Primes[t+5]-Primes[t+4]]=[10,8,6,4,2], [$1..nops(Primes)-5])]; # Muniru A Asiru, Aug 15 2017
-
Select[Partition[Prime[Range[340000]],6,1],Differences[#]=={10,8,6,4,2}&][[All,1]] (* Harvey P. Dale, Aug 22 2018 *)
A079017
Suppose p and q = p+14 are primes. Define the difference pattern of (p,q) to be the successive differences of the primes in the range p to q. There are 15 possible difference patterns, namely [14], [2,12], [6,8], [8,6], [12,2], [2,4,8], [2,6,6], [2,10,2], [6,2,6], [6,6,2], [8,4,2], [2,4,6,2], [2,6,4,2], [2,2,4,2,4], [2,4,2,4,2]. Sequence gives smallest value of p for each difference pattern, sorted by magnitude.
Original entry on oeis.org
3, 5, 17, 23, 29, 47, 83, 89, 113, 137, 149, 197, 359, 509, 1997
Offset: 1
p=1997, q=2011 has difference pattern [2,4,8] and {1997,1999,2003,2011} is the corresponding consecutive prime 4-tuple.
A281448
Initial primes of 9 consecutive primes with consecutive gaps 2, 4, 6, 8, 10, 12, 14, 16.
Original entry on oeis.org
113575727, 232728647, 2426256797, 2469604721, 3344410367, 4656098957, 4952808461, 6369321857, 6430890287, 6760087151, 8518049207, 10818813737, 13195845317, 19684555061, 21884908931, 23953276661, 25509639137, 26367829331, 26390212061, 31004257211
Offset: 1
-
Select[Partition[Prime[Range[20*10^7]], 9, 1], Differences[#] == 2*Range[8] &][[All, 1]]
-
g=0; p=2; forprime(q=3,, if(q-p==g+2, g+=2; if(g==16, print1(q-72", "); g=0), g=0); p=q) \\ Charles R Greathouse IV, Jan 28 2017
A289907
Initial primes of 5 consecutive primes with consecutive gaps 8,6,4,2.
Original entry on oeis.org
1979, 5399, 11813, 41213, 42443, 44249, 47129, 55799, 57773, 74699, 79613, 84299, 88643, 126473, 143813, 148913, 167099, 176489, 178799, 178889, 209249, 211859, 237143, 266663, 267629, 272249, 272333, 322229, 344153, 348443, 354023, 375083, 391379, 399263, 422069, 449549, 521519, 529673
Offset: 1
Prime(299..303) = { 1979, 1987, 1993, 1997, 1999 } and 1979 + 8 = 1987, 1987 + 6 = 1993, 1993 + 4 = 1997, 1997 + 2 = 1999.
Also, prime(5852..5856) = { 57773, 57781, 57787, 57791, 57793 } and 5773 + 8 = 57781, 57781 + 6 = 57787, 57787 + 4 = 57791, 57791 + 2 = 57793.
-
I:=[8,6,4,2];;
P:=Filtered([1..1000000],IsPrime);;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; Collected(last);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3]]);;
P3:=List(Positions(P2,I),i->P[i]);
-
s = Prepend[Differences@ #, First@ #] & /@ Partition[Prime@ Range[10^5], 5, 1]; Select[s, Drop[#, 1] == Range[8, 2, -2] &][[All, 1]] (* Michael De Vlieger, Jul 14 2017 *)
p = {2, 3, 5, 7, 11}; lst = {}; While[ p[[1]] < 530000, If[ Differences@ p == {8, 6, 4, 2}, AppendTo[ lst, p[[1]] ]]; p = Join[Rest@ p, {NextPrime[ p[[-1]]] }]]; lst (* Robert G. Wilson v, Dec 07 2017 *)
-
is(n) = my(q); forstep(i=8,2,-2,q=nextprime(n+1); if(q-n!=i,return(0)); n=q); return(1) \\ David A. Corneth, Jul 23 2017
A290264
Initial primes of 9 consecutive primes with 8 consecutive gaps 16, 14, 12, 10, 8, 6, 4, 2.
Original entry on oeis.org
32465047, 37091581, 146742847, 239659891, 245333251, 272213797, 1060690651, 1541736811, 2002738207, 2480351677, 2636566351, 4421955007, 6168859201, 8158683037, 10367633527, 10623394321, 11452116817, 11691059641, 11892876841, 13551877831, 15043908637
Offset: 1
32465047 is a member of this sequence because the 9 consecutive primes 32465047, 32465063, 32465077, 32465089, 32465099, 32465107, 32465113, 32465117, 32465119 have consecutive gaps 16, 14, 12, 10, 8, 6, 4, 2. That is, 32465047 + 16 = 32465063, 32465063 + 14 = 32465077, 32465077 + 12 = 32465089, 32465089 + 10 = 32465099, 32465099 + 8 = 32465107, 32465107 + 6 = 32465113, 32465113 + 4 = 32465117, 32465117 + 2 = 32465119.
-
P:=Filtered([1..50000000],IsPrime);;I:=Reversed([2,4,6,8,10,12,14,16]);;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);; Collected(last);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2],P1[i+3],P1[i+4],P1[i+5],P1[i+6],P1[i+7]]);;
P3:=List(Positions(P2,I),i->P[i]); Length(P3);
A290706
Greatest of 4 consecutive primes with consecutive gaps 2, 4, 6.
Original entry on oeis.org
29, 53, 239, 359, 653, 1103, 1289, 1439, 1499, 1619, 2699, 3539, 3929, 4013, 4139, 4649, 4799, 4943, 8243, 9473, 10343, 11789, 12119, 13913, 14639, 20759, 21569, 23753, 25589, 26693, 26723, 27749, 27953, 28289, 29033, 31259
Offset: 1
29 is a member of the sequence because 29 is the greatest of the 4 consecutive primes 17, 19, 23, 29 with consecutive gaps 2, 4, 6.
-
K:=3*10^7+1;; # to get all terms <= K.
P:=Filtered([1,3..K],IsPrime);; I:=[2,4,6];;
P1:=List([1..Length(P)-1],i->P[i+1]-P[i]);;
P2:=List([1..Length(P)-Length(I)],i->[P1[i],P1[i+1],P1[i+2]]);;
P3:=List(Positions(P2,I),i->P[i+Length(I)]);
-
for i from 1 to 10^5 do if ithprime(i+1)=ithprime(i)+2 and ithprime(i+2)=ithprime(i)+6 and ithprime(i+3)=ithprime(i)+12 then print(ithprime(i+3)); fi; od;
-
Select[Prime@ Range@ 3500, NextPrime[#, {1, 2, 3}] == # + {2, 6, 12} &] + 12 (* Giovanni Resta, Aug 09 2017 *)
Comments