cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A136439 Sum of heights of all 1-watermelons with wall of length 2*n.

Original entry on oeis.org

1, 3, 10, 34, 118, 417, 1495, 5421, 19838, 73149, 271453, 1012872, 3797228, 14294518, 54006728, 204702328, 778115558, 2965409556, 11327549778, 43361526366, 166306579062, 638969153207, 2458973656584, 9477124288144, 36576265716636, 141344492073392, 546860238004919
Offset: 1

Views

Author

Steven Finch, Apr 02 2008

Keywords

Comments

a(n) is the sum of heights of all Dyck excursions of length 2*n (nonnegative walks beginning and ending at 0 with jumps -1,+1).

References

  • N. G. de Bruijn, D. E. Knuth and S. O. Rice, The average height of planted plane trees, in: Graph Theory and Computing (ed. T. C. Read), Academic Press, New York, 1972, pp. 15-22.

Crossrefs

Programs

  • Maple
    H[0]:=1: for k to 30 do H[k]:=simplify(1/(1-z*H[k-1])) end do: g:=sum(j*(H[j]-H[j-1]),j=1..30): gser:=series(g,z=0,27): seq(coeff(gser,z,n),n=1..24); # Emeric Deutsch, Apr 13 2008
    # second Maple program:
    b:= proc(x, y, h) option remember; `if`(x=0, h, add(`if`(x+j>y,
          b(x-1, y-j, max(h, y-j)), 0), j={$-1..min(1, y)} minus {0}))
        end:
    a:= n-> b(2*n, 0$2):
    seq(a(n), n=1..33);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    c[n_] := (2*n)!/(n!*(n+1)!)
    s[n_,a_] := Sum[If[k < 1, 0, DivisorSigma[0,k]*Binomial[2*n,n+a-k]/Binomial[2*n,n]], {k,a-n,a+n}]
    h[n_] := (n+1)*(s[n,1]-2*s[n,0]+s[n,-1]) - 1
    a[n_] := h[n]*c[n]
  • PARI
    \\ Translation of Mathematica code
    s(n,a)=sum(k=1,a+n, numdiv(k)*binomial(2*n,n+a-k))/binomial(2*n,n)
    a(n)=((n+1)*(s(n,1)-2*s(n,0)+s(n,-1))-1)*binomial(2*n,n)/(n+1) \\ Charles R Greathouse IV, Mar 28 2016

Formula

G.f.: Sum_{k >= 1} k*(H[k]-H[k-1]), where H[0]=1 and H[k]=1/(1-zH[k-1]) for k=1,2,... (the first Maple program makes use of this g.f.). - Emeric Deutsch, Apr 13 2008

Extensions

More terms from Alois P. Heinz, Mar 24 2020

A181119 Number of transpose-complementary plane partitions of n.

Original entry on oeis.org

1, 2, 84, 81796, 1844536720, 962310111888300, 11608208114358751650000, 3236574482779383546336417240000, 20853456581643133066208521560263633137920, 3104385823530881109001458753652585998600603921849920, 10676554307318599842868990948461304923921623250562199975300214736
Offset: 0

Views

Author

Arvind Ayyer, Jan 21 2011

Keywords

Comments

The complement of a plane partition inside an m X m X m cube consists of the boxes which are within the cube, but not in the plane partition, rotated in an appropriate way.
a(n) is the number of plane partitions inside an 2n X 2n X 2n cube whose (matrix) transpose when written as an 2n X 2n array is the same as its complement.

Examples

			When n=2, there are two transpose-complementary plane partitions,
[1 1] and [2 1], both of whose transpose and complement is equal to themselves.
[1 1]     [1 0]
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[3n-1,n]Product[(2n+i+j+1)/(i+j+1),{i,1,2n-2}, {j,i,2n-2}], {n,0,10}] (* Harvey P. Dale, Jan 27 2012 *)
  • PARI
    a(n) = binomial(3*n-1,n)*prod(i=1,2*n-2,prod(j=i,2*n-2,(2*n+i+j+1)/(i+j+1))); \\ Michel Marcus, Jun 18 2015

Formula

a(n) = binomial(3n-1,n)*Product(i=1..2n-2,Product(j=i..2n-2,(2n+i+j+1)/(i+j+1))).
a(n) ~ exp(1/24) * 3^(9*n^2 - 3*n/2 - 1/24) / (sqrt(A) * n^(1/24) * 2^(12*n^2 - n - 1/3)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Feb 28 2015

A355503 Total number of m-tuples (p_1, p_2, ..., p_m) of Dyck paths of semilength n-m, such that each p_i is never below p_{i-1} for m=0..n.

Original entry on oeis.org

1, 2, 3, 5, 11, 35, 164, 1120, 10969, 152849, 3029650, 85227078, 3400752392, 192644205130, 15470939367651, 1761760468965521, 284641456742538865, 65175288287611738435, 21159611204475209730138, 9743708333490185603430830, 6357930817596444858142966826
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2022

Keywords

Examples

			a(3) = 5: ( ), (/\/\), (//\\), (/\, /\, /\), (<>, <>, <>, <>).
		

Crossrefs

Antidiagonal sums of A368025.

Programs

  • Maple
    a:= n-> add(mul(mul((i+j+2*(n-m))/(i+j), j=i..m-1), i=1..m-1), m=0..n):
    seq(a(n), n=0..23);
  • Mathematica
    Table[Sum[Product[Product[(i+j+2*(n-m))/(i+j), {j,i,m-1}], {i,1,m-1}], {m,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 27 2023 *)
    Table[Sum[BarnesG[1 + m] * Sqrt[BarnesG[1 + 2*n] * BarnesG[2 - 2*m + 2*n] * Gamma[1 + 2*m] * Gamma[1 + n] / (BarnesG[1 + 2*m] * Gamma[1 + m] * Gamma[1 + 2*n] * Gamma[1 - m + n])] / BarnesG[1 - m + 2*n], {m, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 27 2023 *)

Formula

a(n) = Sum_{m=0..n} Product_{i=1..m-1, j=i..m-1} (i+j+2*(n-m))/(i+j).
a(n) = 1 + Sum_{k=0..n-1} A078920(n-1,k).
a(n) = 1 + Sum_{k=0..n-1} A123352(n-1,k).
a(n) = Sum_{k=0..n} A368025(n-k, k).
From Vaclav Kotesovec, Aug 27 2023: (Start)
a(n) ~ c * exp(1/24) * 3^(n^2 - n/2) / (sqrt(A) * n^(1/24) * 2^((4*n^2-n-1)/3)), where A = A074962 is the Glaisher-Kinkelin constant and
c = Sum_{k,-oo,oo} 2^((k + mod(n,3)/3)/2 - 3*(k + mod(n,3)/3)^2/2).
Numerically, c = 1.78933741155287907159762028... if mod(n,3)=0 or mod(n,3)=1 and c = 1.78893263307672974352375161... if mod(n,3)=2. (End)

A136440 Sum of heights of all 2-watermelons with wall of length 2*n.

Original entry on oeis.org

3, 11, 60, 406, 3171, 27411, 255617, 2528613, 26224097, 282706396, 3147801820, 36022733951, 422047425238, 5046771514478, 61438059222438, 759851375725606, 9530872096367508, 121063493728881999, 1555352365759798758
Offset: 1

Views

Author

Steven Finch, Apr 02 2008

Keywords

Comments

Consider the set of all pairs of nonintersecting Dyck excursions of length 2*n (nonnegative walks with jumps -1,+1). The lower path begins and ends at 0; the upper path begins and ends at 2. a(n) is the sum of heights of all such upper-Dyck excursions.

Crossrefs

Programs

  • Mathematica
    c[n_] := 6*(2*n)!*(2*n+2)!/(n!*(n+1)!*(n+2)!*(n+3)!)
    s[n_,a_] := Sum[If[k < 1, 0, DivisorSigma[0,k]*Binomial[2*n,n+a-k]/Binomial[2*n,n]], {k,a-n,a+n}]
    t[n_,a_,b_] := Sum[If[(j < 1) || (k < 1), 0, DivisorSigma[0,GCD[j,k]]*Binomial[2*n,n+a-j]*Binomial[2*n,n+b-k]/Binomial[2*n,n]^2], {j,a-n,a+n}, {k,b-n,b+n}]
    f[n_] := (n^2+5*n+6)*(s[n,-3]+s[n,3])-(6*n^2+18*n)*(s[n,-2]+s[n,2])+(15*n^2+27*n+6)*(s[n,-1]+s[n,1])-(20*n^2+28*n+24)*s[n,0]
    g[n_] := t[n,-2,-2]-t[n,-1,-3]-2*t[n,-1,-2]+t[n,-1,-1]+2*t[n,-1,0]-t[n,-1,3]+2*t[n,0,-3]-4*t[n,0,0]+2*t[n,0,3]-t[n,1,-3]-2*t[n,1,-2]+2*t[n,1,-1]+2*t[n,1,0]+t[n,1,1]-t[n,1,3]+2*t[n,2,-2]-2*t[n,2,-1]-2*t[n,2,1]+t[n,2,2]
    h[n_] := ((n+1)*(n+2)/(12*(2*n+1)))*( (n+1)*(n+2)*(n+3)*g[n]+f[n] ) - 1
    a[n_] := h[n]*c[n]
Previous Showing 11-14 of 14 results.