cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A367834 a(n) = Product_{i=1..n, j=1..n} (i^8 + j^8).

Original entry on oeis.org

1, 2, 67634176, 1775927682136440882473213952, 22495149450984565292579847926810488282934424886723006835982336
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 02 2023

Keywords

Comments

Next term is too long to be included.
For m > 0, Product_{j=1..n, k=1..n} (j^m + k^m) ~ c(m) * exp(n*(n+1)*s(m) - m*n*(n-2)/2) * n^(m*(n^2 - 1/4 - v)), where v = 0 if m > 1 and v = 1/6 if m = 1, s(m) = Sum_{j>=1} (-1)^(j+1)/(j*(1 + m*j)) and c(m) is a constant (dependent only on m). Equivalently, s(m) = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/m).
c(1) = A / (2^(1/12) * exp(1/12) * sqrt(Pi)).
c(2) = exp(Pi/12) * Gamma(1/4) / (2^(5/4) * Pi^(5/4)).
c(3) = A * 3^(1/6) * exp(Pi/(6*sqrt(3)) - 1/12) * Gamma(1/3)^2 / (2^(7/4) * Pi^(13/6)), where A = A074962 is the Glaisher-Kinkelin constant.
c(4) = A306620.

Crossrefs

Cf. A079478 (m=1), A324403 (m=2), A324426 (m=3), A324437 (m=4), A324438 (m=5), A324439 (m=6), A324440 (m=7).

Programs

  • Mathematica
    Table[Product[i^8 + j^8, {i, 1, n}, {j, 1, n}], {n, 0, 6}]
  • Python
    from math import prod, factorial
    def A367834(n): return (prod(i**8+j**8 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**4)**2<Chai Wah Wu, Dec 02 2023

Formula

For n>0, a(n)/a(n-1) = A367833(n)^2 / (2*n^24).
a(n) ~ c * 2^(n*(n+1)) * (1 + 1/(sqrt(1 - 1/sqrt(2)) - 1/2))^(sqrt(2 + sqrt(2))*n*((n+1)/2)) * (1 + 1/(sqrt(1 + 1/sqrt(2)) - 1/2))^(sqrt(2 - sqrt(2))*n*((n+1)/2)) * (n^(8*n^2 - 2) / exp(12*n^2 - Pi*sqrt(1 + 1/sqrt(2))*n*(n+1))), where c = 0.043985703178712025347328240881106818917398444790454628282522057393529338998...

A324439 a(n) = Product_{i=1..n, j=1..n} (i^6 + j^6).

Original entry on oeis.org

1, 2, 1081600, 528465082730906880000, 29276520893554373473343522853366005760000000000, 5719545329208791496596894540018824083491259163047733746620041978183680000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^6 + j^6, i=1..n), j=1..n):
    seq(a(n), n=0..5);  # Alois P. Heinz, Nov 26 2023
  • Mathematica
    Table[Product[i^6 + j^6, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
  • Python
    from math import prod, factorial
    def A324439(n): return (prod(i**6+j**6 for i in range(1,n) for j in range(i+1,n+1))*factorial(n)**3)**2<Chai Wah Wu, Nov 26 2023

Formula

a(n) ~ c * 2^(n*(n+1)) * (2 + sqrt(3))^(sqrt(3)*n*(n+1)) * exp(Pi*n*(n+1) - 9*n^2) * n^(6*n^2 - 3/2), where c = 0.104143806044091748191387307161835081649...
a(n) = A324403(n) * A367668(n). - Vaclav Kotesovec, Dec 01 2023
For n>0, a(n)/a(n-1) = A367823^2 / (2*n^18). - Vaclav Kotesovec, Dec 02 2023

Extensions

a(n)=1 prepended by Alois P. Heinz, Nov 26 2023

A324440 a(n) = Product_{i=1..n, j=1..n} (i^7 + j^7).

Original entry on oeis.org

1, 2, 8520192, 956147263254051187507200, 790929096572487518050439299107158612099228070051840000, 266108022587896795750359251172229660295854509829286134803404773931312693787460334360985600000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Comments

For m>1, Product_{j=1..n, k=1..n} (j^m + k^m) ~ c(m) * exp(n*(n+1)*s(m) - m*n*(n-2)/2) * n^(m*(n^2 - 1/4)), where s(m) = Sum_{j>=1} (-1)^(j+1)/(j*(1 + m*j)) and c(m) is a constant (dependent only on m). Equivalently, s(m) = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/m). - Vaclav Kotesovec, Dec 01 2023

Crossrefs

Programs

  • Maple
    a:= n-> mul(mul(i^7 + j^7, i=1..n), j=1..n):
    seq(a(n), n=0..5);  # Alois P. Heinz, Nov 26 2023
  • Mathematica
    Table[Product[i^7+j^7, {i, 1, n}, {j, 1, n}], {n, 1, 6}]
  • Python
    from math import prod, factorial
    def A324440(n): return prod(i**7+j**7 for i in range(1,n) for j in range(i+1,n+1))**2*factorial(n)**7<Chai Wah Wu, Nov 26 2023

Formula

Limit_{n->oo} (a(n)^(1/n^2))/n^7 = 2^(3/2) * (cos(3*Pi/14) / tan(Pi/7))^sin(3*Pi/14) / ((cos(Pi/14)*tan(3*Pi/14))^sin(Pi/14) * (sin(Pi/7)*tan(Pi/14))^cos(Pi/7)) * exp((Pi/sin(Pi/7) - 21)/2) = 0.0334234967249533921390751418772468470887965377...
From Vaclav Kotesovec, Dec 01 2023: (Start)
a(n) ~ c * exp(n*(n+1)*s - 7*n*(n-2)/2) * n^(7*(n^2 - 1/4)), where
s = Sum_{j>=1} (-1)^(j+1)/(j*(1 + 7*j)) = Pi/(2*sin(Pi/7)) + 3*log(2)/2 - 7 - cos(Pi/7) * log(2*sin(Pi/14)^2) - log(2*sin(3*Pi/14)^2) * sin(Pi/14) + log(cos(3*Pi/14)*cos(Pi/7) / sin(Pi/7)) * sin(3*Pi/14) = 0.10150386842315637912206687298894641634315636548242136512503... and
c = 0.068056503846689328929612652207251071282623125565150941566636264805878144...
Equivalently, s = log(2) - HurwitzLerchPhi(-1, 1, 1 + 1/7). (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 26 2023

A324444 a(n) = Product_{i=1..n, j=1..n} (1 + i + j).

Original entry on oeis.org

1, 3, 240, 1512000, 1536288768000, 429266120461516800000, 50406068004584362019389440000000, 3534677027377560888380072035048488960000000000, 199761495428405897006583857561824669625759249203200000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2019

Keywords

Crossrefs

Programs

  • Magma
    [(&*[(&*[1+k+j: j in [1..n]]): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Feb 28 2019
    
  • Maple
    a:= n-> mul(mul(i+j+1, i=1..n), j=1..n):
    seq(a(n), n=0..9);  # Alois P. Heinz, Jun 24 2023
  • Mathematica
    Table[Product[1 + i + j, {i, 1, n}, {j, 1, n}], {n, 1, 10}]
    Table[BarnesG[2*n + 3] / BarnesG[n + 3]^2, {n, 1, 10}]
  • PARI
    a(n) = prod(i=1, n, prod(j=1, n, 1+i+j)); \\ Michel Marcus, Feb 28 2019
    
  • Sage
    [product( product(1+k+j for j in (1..n)) for k in (1..n)) for n in (1..10)] # G. C. Greubel, Feb 28 2019

Formula

a(n) ~ A * 2^(2*n^2 + 4*n + 11/12) * n^(n^2 - 23/12) / (Pi * exp(3*n^2/2 + 1/12)), where A is the Glaisher-Kinkelin constant A074962.
a(n) = BarnesG(2*n + 3) / BarnesG(n + 3)^2.
Product_{i=1..n, j=1..n} (1 + 1/(i + j)) = a(n) / A079478(n) ~ 2^(2*n + 1) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 29 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A306729 a(n) = Product_{i=0..n, j=0..n} (i! + j!).

Original entry on oeis.org

2, 16, 5184, 9559130112, 109045776752640000000000, 27488263744928988967331390258832998400000000000, 1147897050240877062218236820013018349788772091106840426434074807527014400000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[i! + j!, {i, 0, n}, {j, 0, n}], {n, 0, 7}]
    Clear[a]; a[n_] := a[n] = If[n == 0, 2, a[n-1] * Product[k! + n!, {k, 0, n}]^2 / (2*n!)]; Table[a[n], {n, 0, 7}] (* Vaclav Kotesovec, Mar 27 2019 *)
    Table[Product[Product[k! + j!, {k, 0, j}], {j, 1, n}]^2 / (2^(n-1) * BarnesG[n + 2]), {n, 0, 7}] (* Vaclav Kotesovec, Mar 27 2019 *)
  • Python
    from math import prod, factorial as f
    def a(n): return prod(f(i)+f(j) for i in range(n) for j in range(n))
    print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Feb 16 2021

Formula

a(n) ~ c * 2^(n^2/2 + 2*n) * Pi^(n^2/2 + n) * n^(2*n^3/3 + 2*n^2 + 11*n/6 + 5/2) / exp(8*n^3/9 + 2*n^2 + n), where c = A324569 = 62.14398692334529025548974541735...
a(n) = a(n-1) * A323717(n)^2 / (2*n!). - Vaclav Kotesovec, Mar 28 2019

A324402 a(n) = Product_{i=1..n, j=1..n} (2*i + j).

Original entry on oeis.org

1, 3, 360, 6350400, 36212520960000, 117563342374788710400000, 337905477880065368190647009280000000, 1234818479230749311108497004714406224855040000000000, 7795494015765035913020359514023640290443493305037073940480000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 26 2019

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> mul((2*i+n)!/(2*i)!,i=1..n):
    map(f, [$0..10]); # Robert Israel, Feb 27 2019
  • Mathematica
    Table[Product[2*i+j, {i, 1, n}, {j, 1, n}], {n, 1, 10}]

Formula

a(n) ~ sqrt(A/Pi) * 3^(9*n*(n+1)/4 + 11/24) * n^(n^2 - 11/24) / (2^(n^2 + 3*n/2 + 17/24) * exp(3*n^2/2 + 1/24)), where A is the Glaisher-Kinkelin constant A074962.
a(n) = 3*n*a(n-1)*Product_{i=1..n-1} (2*i+n)(2*n+i). - Chai Wah Wu, Feb 26 2019
a(n) = a(n-1) * (3*n)! * (3*n-2)!!/((2*n)! * n!!). - Robert Israel, Feb 27 2019

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 24 2023

A107254 a(n) = SF(2n-1)/SF(n-1)^2 where SF = A000178.

Original entry on oeis.org

1, 1, 12, 8640, 870912000, 22122558259200000, 222531556847250309120000000, 1280394777025250130271722799104000000000, 5746332926632566442385615219551212618645504000000000000
Offset: 0

Views

Author

Henry Bottomley, May 14 2005

Keywords

Comments

Inverse product of all matrix elements of n X n Hilbert matrix M(i,j) = 1/(i+j-1) (i,j = 1..n). - Alexander Adamchuk, Apr 12 2006
The n X n matrix with A(i,j) = 1/(i+j-1)! (i,j = 1..n) has determinant (-1)^floor(n/2)/a(n). - Mikhail Lavrov, Nov 01 2022

Examples

			a(3) = 1!*2!*3!*4!*5!/(1!*2!*1!*2!) = 34560/4 = 8640.
n = 2: HilbertMatrix[n,n]
  1/1 1/2
  1/2 1/3
so a(2) = 1 / (1 * 1/2 * 1/2 * 1/3) = 12.
The n X n Hilbert matrix begins:
  1/1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...
  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...
  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...
  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...
  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...
  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...
		

Crossrefs

Programs

  • Magma
    A107254:= func< n | n eq 0 select 1 else (&*[Factorial(n+j)/Factorial(j): j in [0..n-1]]) >;
    [A107254(n): n in [0..12]]; // G. C. Greubel, Apr 21 2021
  • Maple
    a:= n-> mul((n+i)!/i!, i=0..n-1):
    seq(a(n), n=0..10);  # Alois P. Heinz, Jul 23 2012
  • Mathematica
    Table[Product[(i+j-1),{i,1,n},{j,1,n}], {n,1,10}] (* Alexander Adamchuk, Apr 12 2006 *)
    Table[n!*BarnesG[2n+1]/(BarnesG[n+2]*BarnesG[n+1]), {n,0,12}] (* G. C. Greubel, Apr 21 2021 *)
  • Sage
    a = lambda n: prod(rising_factorial(k,n) for k in (1..n))
    print([a(n) for n in (0..10)]) # Peter Luschny, Nov 29 2015
    

Formula

a(n) = n!*(n+1)!*(n+2)!*...*(2n-1)!/(0!*1!*2!*3!*...*(n-1)!) = A000178(2n-1)/A000178(n-1)^2 = A079478(n)/A000984(n) = A079478(n-1)*A009445(n-1) = A107252(n)*A000142(n) = A088020(n)/A039622(n).
a(n) = 1/Product_{j=1..n} ( Product_{i=1..n} 1/(i+j-1) ). - Alexander Adamchuk, Apr 12 2006
a(n) = 2^(n*(n-1)) * A136411(n) for n > 0 . - Robert Coquereaux, Apr 06 2013
a(n) = A136411(n) * A053763(n) for n > 0. [Following remark from Robert Coquereaux] - M. F. Hasler, Apr 06 2013
a(n) ~ A * 2^(2*n^2-1/12) * n^(n^2+1/12) / exp(3*n^2/2+1/12), where A = 1.28242712910062263687534256886979... is the Glaisher-Kinkelin constant (see A074962). - Vaclav Kotesovec, Feb 10 2015
a(n) = Product_{k=1..n} rf(k,n) where rf denotes the rising factorial. - Peter Luschny, Nov 29 2015
a(n) = (n! * G(2*n+1))/(G(n+1)*G(n+2)), where G(n) is the Barnes G - function. - G. C. Greubel, Apr 21 2021

A368065 a(n) = Product_{i=1..n, j=1..n} (i^2 + 5*i*j + j^2).

Original entry on oeis.org

1, 7, 44100, 3210672937500, 12804360424787610000000000, 8591751256288909159255104643281750000000000, 2333034616280404811605303958158227652934766912996000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[i^2 + 5*i*j + j^2, {i, 1, n}, {j, 1, n}], {n, 0, 7}]

Formula

a(n) ~ c * 7^(7*n*(n+1)/2) * ((5-sqrt(21))/2)^(sqrt(21)*n*(n+1)/2) * n^(2*n^2 - 4/3) / exp(3*n^2), where c = A368069.

A367958 a(n) = Product_{i=1..n, j=1..n} (i + 5*j).

Original entry on oeis.org

1, 6, 5544, 2822916096, 1723467782592331776, 2210440498434925488635904000000, 9234659938893939743399592700454853672960000000, 180150216814109052335771891722360520401032374209013927116800000000
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 06 2023

Keywords

Comments

In general, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^(1/d) * (Product_{j=1..d} Gamma(j/d)^(j/d)) * (d+1)^((d/2 + 1 + 1/(2*d))*n*(n+1) + (d+1)^2/(12*d) + 1/12) * n^(n^2 - d/12 - 1/4 - 1/(12*d)) / ((2*Pi)^((d+1)/4) * exp(3*n^2/2 + 1/(12*d)) * d^((n*(d*n + (d+1)))/2 - 1/(12*d))), where A = A074962 is the Glaisher-Kinkelin constant.
Equivalently, for d>0, Product_{i=1..n, j=1..n} (i + d*j) ~ A^d * (Product_{j=1..d} BarnesG(j/d)) * (2*Pi)^((d-3)/4) * (d+1)^((d + (d+1)^2*(6*n*(n+1) + 1)) / (12*d)) * n^(n^2 - 1/4 - 1/(12*d) - d/12) / (d^((n+1)*(d*n + 1)/2) * exp(3*n^2/2 + d/12)).

Crossrefs

Cf. A079478 (d=1), A324402 (d=2), A367956 (d=3), A367957 (d=4).

Programs

  • Maple
    a:= n-> mul(mul(i+5*j, i=1..n), j=1..n):
    seq(a(n), n=0..8);  # Alois P. Heinz, Dec 06 2023
  • Mathematica
    Table[Product[i + 5*j, {i, 1, n}, {j, 1, n}], {n, 0, 10}]

Formula

a(n) ~ A^(1/5) * (1 + sqrt(5))^(1/10) * 2^(18*n*(n+1)/5 + 29/60) * 3^(18*n*(n+1)/5 + 41/60) * n^(n^2 - 41/60) / (Pi^(1/10) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) * 5^(n*(5*n+6)/2 + 1/3) * exp(3*n^2/2 + 1/60)), where A = A074962 is the Glaisher-Kinkelin constant.

A368066 a(n) = Product_{i=1..n, j=1..n} (i^2 + 6*i*j + j^2).

Original entry on oeis.org

1, 8, 73984, 10027173445632, 93867986947606492024406016, 185865459466664040069739311383413462872883200, 186896871826703385639703785281909582209471190408233074664996759142400
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 10 2023

Keywords

Comments

In general, for d >= -1, Product_{i=1..n, j=1..n} (i^2 + d*i*j + j^2) ~ c(d) * (d+2)^((d+2)*n*(n+1)/2) * n^(2*n^2 - 1/2 - d/6) / ((d/2 + sqrt(d^2/4 - 1))^(sqrt(d^2 - 4)*n*(n+1)/2) * exp(3*n^2)), where c(d) is a constant (dependent only on d).
c(-1) = 3^(1/6) * exp(Pi/(6*sqrt(3))) * Gamma(1/3)^2 / (2*Pi)^(5/3).
c(0) = exp(Pi/12) * Gamma(1/4) / (2*Pi)^(5/4).
c(1) = 3^(5/12) * exp(Pi/(12*sqrt(3))) * Gamma(1/3) / (2*Pi)^(4/3).
c(2) = A^2 / (2^(1/6) * exp(1/6) * Pi), where A = A074962.
c(3) = 2^((sqrt(5) - 9)/6) * sqrt(5) * (1 + sqrt(5))^(1/2 - sqrt(5)/6) / Pi.
c(4) = 2^((sqrt(3) - 1)/6) * 3^(13/24) * (1 + sqrt(3))^(1/2 - 1/sqrt(3)) / (Pi^(7/12) * Gamma(1/4)^(1/3) * Gamma(1/3)^(1/2)).
c(5) = A368069.
c(6) = 2^(25/8) * (1 + sqrt(2))^(3/4 - 2*sqrt(2)/3) / (Pi^(1/4) * Gamma(1/8) * Gamma(1/4)^(1/2)).
Special (non-integer) case: Product_{i=1..n, j=1..n} (i^2 + (d + 1/d)*i*j + j^2) ~ A^(2/d) * (Product_{j=1..d} Gamma(j/d)^(2*j/d)) * (d+1)^((d/2 + 1 + 1/(2*d))*2*n*(n+1) + (d+1)^2/(6*d) + 1/6) * n^(2*n^2 - d/6 - 1/2 - 1/(6*d)) / ((2*Pi)^((d+1)/2) * exp(3*n^2 + 1/(6*d)) * d^((d+1)*n*(n+1) - 1/(6*d))), where A = A074962 is the Glaisher-Kinkelin constant.

Crossrefs

Cf. A367543 (d=-1), A324403 (d=0), A367542 (d=1), A079478^2 (d=2), A368067 (d=3), A368064 (d=4), A368065 (d=5).

Programs

  • Mathematica
    Table[Product[i^2 + 6*i*j + j^2, {i, 1, n}, {j, 1, n}], {n, 0, 7}]

Formula

a(n) ~ 2^(12*n*(n+1) + 25/8) * n^(2*n^2 - 3/2) / (Pi^(1/4) * Gamma(1/4)^(1/2) * Gamma(1/8) * (1 + sqrt(2))^(2*sqrt(2)*(6*n*(n+1) + 1)/3 - 3/4) * exp(3*n^2)).
Previous Showing 11-20 of 35 results. Next