cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A188288 In lunar arithmetic in base 2, the number of divisors of the number 11...1101 (n digits, the binary expansion of 2^n-3).

Original entry on oeis.org

0, 1, 0, 2, 2, 2, 4, 6, 10, 16, 31, 55, 100, 185, 345, 644, 1209, 2274, 4298, 8145, 15469, 29454, 56213, 107489, 205925, 395190, 759621, 1462282, 2818799, 5440705, 10513994, 20340794, 39393580, 76368240, 148185145, 287791544, 559386196, 1088144064, 2118283567, 4126561528, 8044217224
Offset: 0

Views

Author

Adam S. Jobson and N. J. A. Sloane, Mar 26 2011

Keywords

Comments

a(1)=1 by convention. The g.f. is only a conjecture.

Examples

			a(6) = 4 since 111101 has the divisors 1, 101, 1101, 111101.
a(8) = 10 since 11111101 has the divisors 1, 101, 1001, 1101, 10101, 11001, 11101, 111001, 111101, 11111101.
		

Crossrefs

Formula

G.f.: x + x^3/(1-x) + Sum(x^l*(1-x)^2/(1-2*x+x^(l-1)-x^l+x^(l+2)), l=3..oo). - N. J. A. Sloane, Apr 19 2011

Extensions

a(1) in b-file corrected by Andrew Howroyd, Feb 22 2018

A329128 Number of nonequivalent sets whose translations and reflections cover {1..n}.

Original entry on oeis.org

1, 2, 3, 6, 8, 17, 24, 52, 77, 171, 265, 593, 952, 2131, 3519, 7846, 13238, 29351, 50374, 111031, 193155, 423403, 744616, 1624302, 2881784, 6260030, 11186219, 24213106, 43522800, 93922741, 169653109, 365172178
Offset: 1

Views

Author

Andrew Howroyd, Nov 07 2019

Keywords

Comments

Equivalence is up to translation and reflection. Only translations and reflections that are subsets of {1..n} are included.

Examples

			For n = 4 there are 6 sets (up to equivalence) that with their reflections and translations cover {1..4}:
  {{1}, {2}, {3}, {4}};
  {{1, 2}, {2, 3}, {3, 4}};
  {{1, 3}, {2, 4}};
  {{1, 2, 4}, {1, 3, 4}};
  {{1, 2, 3}, {2, 3, 4}};
  {{1, 2, 3, 4}}.
.
For n = 5 there are 8 sets (up to equivalence) that with their reflections and translations cover {1..5}:
  {{1}, {2}, {3}, {4}, {5}};
  {{1, 2}, {2, 3}, {3, 4}, {4, 5}};
  {{1, 3}, {2, 4}, {3, 5}};
  {{1, 2, 4}, {1, 3, 4}, {2, 3, 5}, {2, 4, 5}};
  {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}};
  {{1, 2, 3, 5}, {1, 3, 4, 5}};
  {{1, 2, 3, 4}, {2, 3, 4, 5}};
  {{1, 2, 3, 4, 5}}.
		

Crossrefs

Cf. A079500 (if only translations allowed).

A369115 Expansion of (1 - x)^(-2) * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)).

Original entry on oeis.org

1, 3, 7, 14, 26, 46, 80, 138, 239, 417, 735, 1309, 2355, 4275, 7823, 14416, 26728, 49820, 93300, 175454, 331170, 627154, 1191204, 2268604, 4330915, 8286101, 15884857, 30507175, 58686513, 113066033, 218137531, 421391695, 814999229, 1578000229, 3058458885, 5933549906
Offset: 0

Views

Author

Peter Luschny, Jan 21 2024

Keywords

Comments

Considering more generally the family of generating functions (1 - x)^n * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)) one finds several sequences related to compositions as indicated in the cross-references.

Crossrefs

Cf. This sequence (n=-2), A186537 left shifted (n=-1), A079500 (n=0), A368279 (n=1), A369116 (n=2).

Programs

  • Maple
    gf := (1 - x)^(-2) * add(x^j / (1 - add(x^k, k = 1..j)), j = 0..42):
    ser := series(gf, x, 40): seq(coeff(ser, x, k), k = 0..38);

Formula

Partial sums of A186537 starting at n = 1.

A369116 Expansion of (1 - x)^2 * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)).

Original entry on oeis.org

1, -1, 1, 0, 1, 1, 3, 4, 9, 15, 29, 53, 100, 186, 352, 663, 1257, 2387, 4547, 8678, 16602, 31818, 61092, 117486, 226277, 436403, 842731, 1629297, 3153466, 6109704, 11848634, 22998892, 44680016, 86869392, 169024094, 329110519, 641254825, 1250261783, 2439155631
Offset: 0

Views

Author

Peter Luschny, Jan 21 2024

Keywords

Comments

Considering more generally the family of generating functions (1 - x)^n * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)) one finds several sequences related to compositions as indicated in the cross-references.

Crossrefs

Cf. A369115 (n=-2), A186537 left shifted (n=-1), A079500 (n=0), A368279 (n=1), this sequence (n=2).

Programs

  • Maple
    gf := (1 - x)^2 * add(x^j / (1 - add(x^k, k = 1..j)), j = 0..42):
    ser := series(gf, x, 40): seq(coeff(ser, x, k), k = 0..38);

Formula

a(n) = A368279(n) - A368279(n-1) where A368279(-1) = 0.

A067150 Number of integers i=1,2,...,n such that (n,i) has Property F3*, i.e., i and n are consecutive terms of a sequence b(k) satisfying b(1)=1, b(n) = (b(n-1) OR 2*b(n-1)) + b(n-2), where the OR is taken bitwise.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 3, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 1, 2, 0, 3, 5, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0
Offset: 1

Views

Author

John W. Layman, Jan 05 2002

Keywords

Comments

Surprisingly, for k > 0, we find that a(2^k) = F(k-1), where {F(n)} is the sequence of Fibonacci numbers (A000045). Also, except for n = 2^3 = 8, these values are exactly those where new records in a(n) are made.
The definition can be restated as follows: a(n) is the number of integers i, 0 < i < n such that i and n are consecutive terms of some sequence b(k) satisfying b(1)=1 and b(k) = 3#b(k-1) + b(k-2), where # denotes OR-numbral multiplication (see A048888 for the definition).
If the OR-numbral multiplier 3 in the definition is replaced by 7, the resulting sequence has as record values the tribonacci numbers in A000073.

Crossrefs

A188524 In base-2 lunar arithmetic, out of all odd numbers of length n, it appears that 111..1 (with n ones) has the most lunar divisors; the sequence gives the number of lunar divisors of the runner-up.

Original entry on oeis.org

2, 2, 4, 4, 6, 10, 16, 31, 55, 100, 185, 345, 644, 1209, 2274, 4298, 8145, 15469, 29454, 56213, 107489, 205925, 395190, 759621, 1462282, 2818799, 5440705, 10513994, 20340794, 39393580, 76368240, 148185145, 287791544, 559386196, 1088144064, 2118283567, 4126561528, 8044217224
Offset: 3

Views

Author

N. J. A. Sloane, Apr 16 2011

Keywords

Examples

			For n = 3, 4, 5 the runner-ups are 101, 1101 or 1011, 11011; thereafter they appear to be the numbers 111...101 or their reversals (see A188288).
		

Crossrefs

A224960 Number of compositions [p(1), p(2), ..., p(k)] of n such that p(j) >= p(1) - 1.

Original entry on oeis.org

1, 1, 2, 4, 7, 14, 26, 52, 101, 200, 396, 787, 1564, 3117, 6214, 12398, 24749, 49427, 98740, 197303, 394323, 788201, 1575695, 3150265, 6298732, 12594595, 25184598, 50361842, 100711888, 201404839, 402779246, 805509560, 1610940381, 3221753990
Offset: 0

Views

Author

Joerg Arndt, Apr 21 2013

Keywords

Examples

			The a(5) = 14 such compositions of 5 are
01:  [ 1 1 1 1 1 ]
02:  [ 1 1 1 2 ]
03:  [ 1 1 2 1 ]
04:  [ 1 1 3 ]
05:  [ 1 2 1 1 ]
06:  [ 1 2 2 ]
07:  [ 1 3 1 ]
08:  [ 1 4 ]
09:  [ 2 1 1 1 ]
10:  [ 2 1 2 ]
11:  [ 2 2 1 ]
12:  [ 2 3 ]
13:  [ 3 2 ]
14:  [ 5 ]
(the two forbidden compositions are [ 3 1 1 ] and [ 4 1 ]).
		

Crossrefs

Cf. A171682 (compositions such that p(j) >= p(1)).
Cf. A079501 (compositions such that p(j) > p(1)).
Cf. A048888 (compositions such that p(j) <= p(1) + 1).
Cf. A007059 (compositions such that p(j) < p(1)).
Cf. A079500 (compositions such that p(j) <= p(1)).

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j,
          `if`(i=0, max(1, j-1), i)), j=`if`(i=0, 1, i)..n))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..50);  # Alois P. Heinz, May 02 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, If[i == 0, Max[1, j - 1], i]], {j, If[i == 0, 1, i], n}]];
    a[n_] := b[n, 0];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)

Formula

a(n) ~ 3 * 2^(n-3). - Vaclav Kotesovec, May 01 2014

A238345 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n where the k-th part is the first occurrence of a largest part, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 5, 2, 1, 0, 8, 5, 2, 1, 0, 14, 9, 6, 2, 1, 0, 24, 18, 12, 7, 2, 1, 0, 43, 33, 25, 16, 8, 2, 1, 0, 77, 62, 49, 35, 21, 9, 2, 1, 0, 140, 115, 95, 73, 49, 27, 10, 2, 1, 0, 256, 215, 181, 148, 108, 68, 34, 11, 2, 1, 0, 472, 401, 346, 291, 230, 158, 93, 42, 12, 2, 1, 0, 874, 753, 657, 569, 470, 353, 228, 125, 51, 13, 2, 1, 0
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

Column k=1: T(n,1) = A079500(n) = A007059(n+1).
Row sums are A011782.

Examples

			Triangle starts:
01:     1;
02:     2,    0;
03:     3,    1,    0;
04:     5,    2,    1,    0;
05:     8,    5,    2,    1,    0;
06:    14,    9,    6,    2,    1,    0;
07:    24,   18,   12,    7,    2,    1,    0;
08:    43,   33,   25,   16,    8,    2,    1,   0;
09:    77,   62,   49,   35,   21,    9,    2,   1,   0;
10:   140,  115,   95,   73,   49,   27,   10,   2,   1,   0;
11:   256,  215,  181,  148,  108,   68,   34,  11,   2,   1,  0;
12:   472,  401,  346,  291,  230,  158,   93,  42,  12,   2,  1,  0;
13:   874,  753,  657,  569,  470,  353,  228, 125,  51,  13,  2,  1, 0;
14:  1628, 1416, 1250, 1102,  943,  753,  533, 324, 165,  61, 14,  2, 1, 0;
15:  3045, 2673, 2380, 2126, 1866, 1558, 1188, 791, 453, 214, 72, 15, 2, 1, 0;
...
		

Programs

  • Maple
    g:= proc(n, m) option remember; `if`(n=0, 1,
           add(g(n-j, min(n-j, m)), j=1..min(n, m)))
        end:
    h:= proc(n, t, m) option remember; `if`(n=0, 0,
          `if`(t=1, add(g(n-j, j), j=m+1..n),
           add(h(n-j, t-1, max(m, j)), j=1..n)))
        end:
    T:= (n, k)-> h(n, k, 0):
    seq(seq(T(n, k), k=1..n), n=1..15);
  • Mathematica
    g[n_, m_] := g[n, m] = If[n == 0, 1, Sum[g[n-j, Min[n-j, m]], {j, 1, Min[n, m]}]]; h[n_, t_, m_] := h[n, t, m] = If[n == 0, 0, If[t == 1, Sum[g[n-j, j], {j, m+1, n}], Sum[h[n-j, t-1, Max[m, j]], {j, 1, n}]]]; T[n_, k_] := h[n, k, 0]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 12 2015, translated from Maple *)

A238346 Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n where the k-th part is the last occurrence of a largest part, n>=1, 1<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 8, 9, 8, 5, 1, 1, 14, 15, 15, 12, 6, 1, 1, 24, 27, 27, 24, 17, 7, 1, 1, 43, 47, 50, 46, 37, 23, 8, 1, 1, 77, 85, 90, 89, 75, 55, 30, 9, 1, 1, 140, 153, 165, 167, 152, 118, 79, 38, 10, 1, 1, 256, 279, 301, 313, 299, 250, 180, 110, 47, 11, 1, 1, 472, 511, 552, 582, 578, 516, 398, 267, 149, 57, 12, 1, 1
Offset: 1

Views

Author

Joerg Arndt and Alois P. Heinz, Feb 25 2014

Keywords

Comments

Column k=1: T(n,1) = A079500(n-1) = A007059(n).
Row sums are A011782.

Examples

			Triangle starts:
01:  1,
02:  1, 1,
03:  2, 1, 1,
04:  3, 3, 1, 1,
05:  5, 5, 4, 1, 1,
06:  8, 9, 8, 5, 1, 1,
07:  14, 15, 15, 12, 6, 1, 1,
08:  24, 27, 27, 24, 17, 7, 1, 1,
09:  43, 47, 50, 46, 37, 23, 8, 1, 1,
10:  77, 85, 90, 89, 75, 55, 30, 9, 1, 1,
11:  140, 153, 165, 167, 152, 118, 79, 38, 10, 1, 1,
12:  256, 279, 301, 313, 299, 250, 180, 110, 47, 11, 1, 1,
13:  472, 511, 552, 582, 578, 516, 398, 267, 149, 57, 12, 1, 1,
...
		

A245437 Expansion of x^5/(x^6-x^4-x^2-x+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 10, 17, 29, 50, 86, 147, 252, 432, 741, 1270, 2177, 3732, 6398, 10968, 18802, 32232, 55255, 94723, 162382, 278369, 477204, 818064, 1402395, 2404105, 4121322, 7065122, 12111635, 20762798, 35593360, 61017175, 104600848, 179315699
Offset: 0

Views

Author

Vincenzo Librandi, Jul 22 2014

Keywords

Comments

G.f. taken from p. 12 of the Brlek et al. reference.

Crossrefs

Programs

  • Magma
    [n le 6 select Floor(n/6) else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-6): n in [1..50]];
  • Mathematica
    CoefficientList[Series[x^5/(x^6 - x^4 - x^2 - x + 1), {x, 0, 50}], x]
    LinearRecurrence[{1, 1, 0, 1, 0, -1}, {0, 0, 0, 0, 0, 1}, 50] (* Bruno Berselli, Jul 22 2014 *)

Formula

G.f.: x^5/(x^6 - x^4 - x^2 - x + 1).
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6) for n>5.
Previous Showing 31-40 of 44 results. Next