A188288
In lunar arithmetic in base 2, the number of divisors of the number 11...1101 (n digits, the binary expansion of 2^n-3).
Original entry on oeis.org
0, 1, 0, 2, 2, 2, 4, 6, 10, 16, 31, 55, 100, 185, 345, 644, 1209, 2274, 4298, 8145, 15469, 29454, 56213, 107489, 205925, 395190, 759621, 1462282, 2818799, 5440705, 10513994, 20340794, 39393580, 76368240, 148185145, 287791544, 559386196, 1088144064, 2118283567, 4126561528, 8044217224
Offset: 0
a(6) = 4 since 111101 has the divisors 1, 101, 1101, 111101.
a(8) = 10 since 11111101 has the divisors 1, 101, 1001, 1101, 10101, 11001, 11101, 111001, 111101, 11111101.
A329128
Number of nonequivalent sets whose translations and reflections cover {1..n}.
Original entry on oeis.org
1, 2, 3, 6, 8, 17, 24, 52, 77, 171, 265, 593, 952, 2131, 3519, 7846, 13238, 29351, 50374, 111031, 193155, 423403, 744616, 1624302, 2881784, 6260030, 11186219, 24213106, 43522800, 93922741, 169653109, 365172178
Offset: 1
For n = 4 there are 6 sets (up to equivalence) that with their reflections and translations cover {1..4}:
{{1}, {2}, {3}, {4}};
{{1, 2}, {2, 3}, {3, 4}};
{{1, 3}, {2, 4}};
{{1, 2, 4}, {1, 3, 4}};
{{1, 2, 3}, {2, 3, 4}};
{{1, 2, 3, 4}}.
.
For n = 5 there are 8 sets (up to equivalence) that with their reflections and translations cover {1..5}:
{{1}, {2}, {3}, {4}, {5}};
{{1, 2}, {2, 3}, {3, 4}, {4, 5}};
{{1, 3}, {2, 4}, {3, 5}};
{{1, 2, 4}, {1, 3, 4}, {2, 3, 5}, {2, 4, 5}};
{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}};
{{1, 2, 3, 5}, {1, 3, 4, 5}};
{{1, 2, 3, 4}, {2, 3, 4, 5}};
{{1, 2, 3, 4, 5}}.
Cf.
A079500 (if only translations allowed).
A369115
Expansion of (1 - x)^(-2) * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)).
Original entry on oeis.org
1, 3, 7, 14, 26, 46, 80, 138, 239, 417, 735, 1309, 2355, 4275, 7823, 14416, 26728, 49820, 93300, 175454, 331170, 627154, 1191204, 2268604, 4330915, 8286101, 15884857, 30507175, 58686513, 113066033, 218137531, 421391695, 814999229, 1578000229, 3058458885, 5933549906
Offset: 0
-
gf := (1 - x)^(-2) * add(x^j / (1 - add(x^k, k = 1..j)), j = 0..42):
ser := series(gf, x, 40): seq(coeff(ser, x, k), k = 0..38);
A369116
Expansion of (1 - x)^2 * Sum_{j>=0} (x^j / (1 - Sum_{k=1..j} x^k)).
Original entry on oeis.org
1, -1, 1, 0, 1, 1, 3, 4, 9, 15, 29, 53, 100, 186, 352, 663, 1257, 2387, 4547, 8678, 16602, 31818, 61092, 117486, 226277, 436403, 842731, 1629297, 3153466, 6109704, 11848634, 22998892, 44680016, 86869392, 169024094, 329110519, 641254825, 1250261783, 2439155631
Offset: 0
-
gf := (1 - x)^2 * add(x^j / (1 - add(x^k, k = 1..j)), j = 0..42):
ser := series(gf, x, 40): seq(coeff(ser, x, k), k = 0..38);
A067150
Number of integers i=1,2,...,n such that (n,i) has Property F3*, i.e., i and n are consecutive terms of a sequence b(k) satisfying b(1)=1, b(n) = (b(n-1) OR 2*b(n-1)) + b(n-2), where the OR is taken bitwise.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 2, 3, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 1, 2, 0, 3, 5, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0
Offset: 1
A188524
In base-2 lunar arithmetic, out of all odd numbers of length n, it appears that 111..1 (with n ones) has the most lunar divisors; the sequence gives the number of lunar divisors of the runner-up.
Original entry on oeis.org
2, 2, 4, 4, 6, 10, 16, 31, 55, 100, 185, 345, 644, 1209, 2274, 4298, 8145, 15469, 29454, 56213, 107489, 205925, 395190, 759621, 1462282, 2818799, 5440705, 10513994, 20340794, 39393580, 76368240, 148185145, 287791544, 559386196, 1088144064, 2118283567, 4126561528, 8044217224
Offset: 3
For n = 3, 4, 5 the runner-ups are 101, 1101 or 1011, 11011; thereafter they appear to be the numbers 111...101 or their reversals (see A188288).
A224960
Number of compositions [p(1), p(2), ..., p(k)] of n such that p(j) >= p(1) - 1.
Original entry on oeis.org
1, 1, 2, 4, 7, 14, 26, 52, 101, 200, 396, 787, 1564, 3117, 6214, 12398, 24749, 49427, 98740, 197303, 394323, 788201, 1575695, 3150265, 6298732, 12594595, 25184598, 50361842, 100711888, 201404839, 402779246, 805509560, 1610940381, 3221753990
Offset: 0
The a(5) = 14 such compositions of 5 are
01: [ 1 1 1 1 1 ]
02: [ 1 1 1 2 ]
03: [ 1 1 2 1 ]
04: [ 1 1 3 ]
05: [ 1 2 1 1 ]
06: [ 1 2 2 ]
07: [ 1 3 1 ]
08: [ 1 4 ]
09: [ 2 1 1 1 ]
10: [ 2 1 2 ]
11: [ 2 2 1 ]
12: [ 2 3 ]
13: [ 3 2 ]
14: [ 5 ]
(the two forbidden compositions are [ 3 1 1 ] and [ 4 1 ]).
Cf.
A171682 (compositions such that p(j) >= p(1)).
Cf.
A079501 (compositions such that p(j) > p(1)).
Cf.
A048888 (compositions such that p(j) <= p(1) + 1).
Cf.
A007059 (compositions such that p(j) < p(1)).
Cf.
A079500 (compositions such that p(j) <= p(1)).
-
b:= proc(n, i) option remember; `if`(n=0, 1, add(b(n-j,
`if`(i=0, max(1, j-1), i)), j=`if`(i=0, 1, i)..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..50); # Alois P. Heinz, May 02 2013
-
b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, If[i == 0, Max[1, j - 1], i]], {j, If[i == 0, 1, i], n}]];
a[n_] := b[n, 0];
a /@ Range[0, 50] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
A238345
Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n where the k-th part is the first occurrence of a largest part, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 5, 2, 1, 0, 8, 5, 2, 1, 0, 14, 9, 6, 2, 1, 0, 24, 18, 12, 7, 2, 1, 0, 43, 33, 25, 16, 8, 2, 1, 0, 77, 62, 49, 35, 21, 9, 2, 1, 0, 140, 115, 95, 73, 49, 27, 10, 2, 1, 0, 256, 215, 181, 148, 108, 68, 34, 11, 2, 1, 0, 472, 401, 346, 291, 230, 158, 93, 42, 12, 2, 1, 0, 874, 753, 657, 569, 470, 353, 228, 125, 51, 13, 2, 1, 0
Offset: 1
Triangle starts:
01: 1;
02: 2, 0;
03: 3, 1, 0;
04: 5, 2, 1, 0;
05: 8, 5, 2, 1, 0;
06: 14, 9, 6, 2, 1, 0;
07: 24, 18, 12, 7, 2, 1, 0;
08: 43, 33, 25, 16, 8, 2, 1, 0;
09: 77, 62, 49, 35, 21, 9, 2, 1, 0;
10: 140, 115, 95, 73, 49, 27, 10, 2, 1, 0;
11: 256, 215, 181, 148, 108, 68, 34, 11, 2, 1, 0;
12: 472, 401, 346, 291, 230, 158, 93, 42, 12, 2, 1, 0;
13: 874, 753, 657, 569, 470, 353, 228, 125, 51, 13, 2, 1, 0;
14: 1628, 1416, 1250, 1102, 943, 753, 533, 324, 165, 61, 14, 2, 1, 0;
15: 3045, 2673, 2380, 2126, 1866, 1558, 1188, 791, 453, 214, 72, 15, 2, 1, 0;
...
-
g:= proc(n, m) option remember; `if`(n=0, 1,
add(g(n-j, min(n-j, m)), j=1..min(n, m)))
end:
h:= proc(n, t, m) option remember; `if`(n=0, 0,
`if`(t=1, add(g(n-j, j), j=m+1..n),
add(h(n-j, t-1, max(m, j)), j=1..n)))
end:
T:= (n, k)-> h(n, k, 0):
seq(seq(T(n, k), k=1..n), n=1..15);
-
g[n_, m_] := g[n, m] = If[n == 0, 1, Sum[g[n-j, Min[n-j, m]], {j, 1, Min[n, m]}]]; h[n_, t_, m_] := h[n, t, m] = If[n == 0, 0, If[t == 1, Sum[g[n-j, j], {j, m+1, n}], Sum[h[n-j, t-1, Max[m, j]], {j, 1, n}]]]; T[n_, k_] := h[n, k, 0]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Jan 12 2015, translated from Maple *)
A238346
Triangle T(n,k) read by rows: T(n,k) is the number of compositions of n where the k-th part is the last occurrence of a largest part, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 8, 9, 8, 5, 1, 1, 14, 15, 15, 12, 6, 1, 1, 24, 27, 27, 24, 17, 7, 1, 1, 43, 47, 50, 46, 37, 23, 8, 1, 1, 77, 85, 90, 89, 75, 55, 30, 9, 1, 1, 140, 153, 165, 167, 152, 118, 79, 38, 10, 1, 1, 256, 279, 301, 313, 299, 250, 180, 110, 47, 11, 1, 1, 472, 511, 552, 582, 578, 516, 398, 267, 149, 57, 12, 1, 1
Offset: 1
Triangle starts:
01: 1,
02: 1, 1,
03: 2, 1, 1,
04: 3, 3, 1, 1,
05: 5, 5, 4, 1, 1,
06: 8, 9, 8, 5, 1, 1,
07: 14, 15, 15, 12, 6, 1, 1,
08: 24, 27, 27, 24, 17, 7, 1, 1,
09: 43, 47, 50, 46, 37, 23, 8, 1, 1,
10: 77, 85, 90, 89, 75, 55, 30, 9, 1, 1,
11: 140, 153, 165, 167, 152, 118, 79, 38, 10, 1, 1,
12: 256, 279, 301, 313, 299, 250, 180, 110, 47, 11, 1, 1,
13: 472, 511, 552, 582, 578, 516, 398, 267, 149, 57, 12, 1, 1,
...
A245437
Expansion of x^5/(x^6-x^4-x^2-x+1).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 10, 17, 29, 50, 86, 147, 252, 432, 741, 1270, 2177, 3732, 6398, 10968, 18802, 32232, 55255, 94723, 162382, 278369, 477204, 818064, 1402395, 2404105, 4121322, 7065122, 12111635, 20762798, 35593360, 61017175, 104600848, 179315699
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Srecko Brlek, Andrea Frosini, Simone Rinaldi, Laurent Vuillon, Tilings by translation: enumeration by a rational language approach, The Electronic Journal of Combinatorics, vol. 13 (2006).
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,1,0,-1).
-
[n le 6 select Floor(n/6) else Self(n-1)+Self(n-2)+Self(n-4)-Self(n-6): n in [1..50]];
-
CoefficientList[Series[x^5/(x^6 - x^4 - x^2 - x + 1), {x, 0, 50}], x]
LinearRecurrence[{1, 1, 0, 1, 0, -1}, {0, 0, 0, 0, 0, 1}, 50] (* Bruno Berselli, Jul 22 2014 *)
Comments