cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A382845 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000045(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

-1, 1, 1, 7, 17, 49, 127, 337, 881, 2311, 6049, 15841, 41471, 108577, 284257, 744199, 1948337, 5100817, 13354111, 34961521, 91530449, 239629831, 627359041, 1642447297, 4299982847, 11257501249, 29472520897, 77160061447, 202007663441, 528862928881, 1384581123199
Offset: 0

Views

Author

Keywords

Examples

			For n=4, the short leg is A382843(2,1) = 3 and the long leg is A382843(2,2) = 4  so the sum of the legs is then a(4) = 3 + 4 = 7.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a=Table[Fibonacci[n],{n,0,30}];Apply[Join,Map[{2#^2-1}&,a]]

Formula

a(n) = A382843(n,1) + A382843(n,2).
a(n) = 2*Fibonacci(n)^2 - 1.

A193917 Triangular array: the self-fusion of (p(n,x)), where p(n,x)=sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 3, 6, 9, 3, 5, 9, 15, 24, 5, 8, 15, 24, 40, 64, 8, 13, 24, 39, 64, 104, 168, 13, 21, 39, 63, 104, 168, 273, 441, 21, 34, 63, 102, 168, 272, 441, 714, 1155, 34, 55, 102, 165, 272, 440, 714, 1155, 1870, 3025, 55, 89, 165, 267, 440, 712, 1155
Offset: 0

Views

Author

Clark Kimberling, Aug 09 2011

Keywords

Comments

See A193722 for the definition of fusion of two sequences of polynomials or triangular arrays. (Fusion is defined at A193822; fission, at A193742; see A202503 and A202453 for infinite-matrix representations of fusion and fission.)
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First eight rows of A193917:
1
1...1
1...2...3
2...3...6...9
3...5...9...15...24
5...8...15..24...40...64
8...13..24..39...64...104..168
13..21..39..63...104..168..273..441
...
col 1: A000045
col 2: A000045
col 3: A022086
col 4: A022086
col 5: A022091
col 6: A022091
col 7: A022355
col 8: A022355
right edge, w(n,n): A064831
w(n,n-1): A001654
w(n,n-2): A064831
w(n,n-3): A059840
w(n,n-4): A080097
w(n,n-5): A080143
w(n,n-6): A080144
Suppose n is an even positive integer and w(n+1,x) is the polynomial matched to row n+1 of A193917 as in the Mathematica program (and definition of fusion at A193722), where the first row is counted as row 0.

Examples

			First six rows:
1
1...1
1...2...3
2...3...6....9
3...5...9....15...24
5...8...15...24...40...64
		

Crossrefs

Programs

  • Mathematica
    z = 12;
    p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    q[n_, x_] := p[n, x];
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193917 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]  (* A193918 *)

A194000 Triangular array: the self-fission of (p(n,x)), where sum{F(k+1)*x^(n-k) : 0<=k<=n}, where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, 2, 3, 3, 5, 9, 5, 8, 15, 24, 8, 13, 24, 39, 64, 13, 21, 39, 63, 104, 168, 21, 34, 63, 102, 168, 272, 441, 34, 55, 102, 165, 272, 440, 714, 1155, 55, 89, 165, 267, 440, 712, 1155, 1869, 3025, 89, 144, 267, 432, 712, 1152, 1869, 3024, 4895, 7920, 144, 233
Offset: 0

Views

Author

Clark Kimberling, Aug 11 2011

Keywords

Comments

See A193917 for the self-fusion of the same sequence of polynomials. (Fusion is defined at A193822; fission, at A193842; see A202503 and A202453 for infinite-matrix representations of fusion and fission.)
...
First five rows of P (triangle of coefficients of polynomials p(n,x)):
1
1...1
1...1...2
1...1...2...3
1...1...2...3...5
First eight rows of A194000:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
21...34...63...102..168...272...441
34...55...102..165..272...440...714..1155
...
col 1: A000045
col 2: A000045
col 3: A022086
col 4: A022086
col 5: A022091
col 6: A022091
right edge, d(n,n): A064831
d(n,n-1): A059840
d(n,n-2): A080097
d(n,n-3): A080143
d(n,n-4): A080144
...
Suppose n is an odd positive integer and d(n+1,x) is the polynomial matched to row n+1 of A194000 as in the Mathematica program (and definition of fission at A193842), where the first row is counted as row 0.

Examples

			First six rows:
1
2....3
3....5....9
5....8....15...24
8....13...24...39...64
13...21...29...63...104...168
...
Referring to the matrix product for fission at A193842,
the row (5,8,15,24) is the product of P(4) and QQ, where
P(4)=(p(4,4), p(4,3), p(4,2), p(4,1))=(5,3,2,1); and
QQ is the 4x4 matrix
(1..1..2..3)
(0..1..1..2)
(0..0..1..1)
(0..0..0..1).
		

Crossrefs

Programs

  • Mathematica
    z = 11;
    p[n_, x_] := Sum[Fibonacci[k + 1]*x^(n - k), {k, 0, n}];
    q[n_, x_] := p[n, x];
    p1[n_, k_] := Coefficient[p[n, x], x^k];
    p1[n_, 0] := p[n, x] /. x -> 0;
    d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
    h[n_] := CoefficientList[d[n, x], {x}]
    TableForm[Table[Reverse[h[n]], {n, 0, z}]]
    Flatten[Table[Reverse[h[n]], {n, -1, z}]]  (* A194000 *)
    TableForm[Table[h[n], {n, 0, z}]]
    Flatten[Table[h[n], {n, -1, z}]]  (* A194001 *)

A214729 Member m=6 of the m-family of sums b(m,n) = Sum_{k=0..n} F(k+m)*F(k), m >= 0, n >= 0, with the Fibonacci numbers F.

Original entry on oeis.org

0, 13, 34, 102, 267, 712, 1864, 4893, 12810, 33550, 87835, 229968, 602064, 1576237, 4126642, 10803702, 28284459, 74049688, 193864600, 507544125, 1328767770, 3478759198, 9107509819, 23843770272, 62423800992, 163427632717, 427859097154, 1120149658758
Offset: 0

Views

Author

Wolfdieter Lang, Jul 27 2012

Keywords

Comments

See the comment section on A080144 for the general formula and the o.g.f. for b(m,n).

Crossrefs

Cf. A001654, A027941, A059840(n+2), A064831, A080097, A080143 and A080144 for the m=0,1,...,5 members.
Cf. A027941.

Programs

  • Magma
    [(9*(-1)^(n+1)-20+Lucas(2*n+7))/5: n in [0..40]]; // Vincenzo Librandi, Aug 26 2017
    
  • Mathematica
    With[{m = 6}, Table[Sum[Fibonacci[k + m]*Fibonacci[k], {k, 0, n}], {n, 0, 25}]] (* or *)
    Table[(9 (-1)^(n + 1) - 20 + LucasL[2 n + 7])/5, {n, 0, 25}] (* Michael De Vlieger, Aug 23 2017 *)
    LinearRecurrence[{3,0,-3,1},{0,13,34,102},40] (* Harvey P. Dale, Jun 13 2022 *)
  • PARI
    concat(0, Vec(x*(13 - 5*x) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)) + O(x^30))) \\ Colin Barker, Aug 25 2017
    
  • SageMath
    [fibonacci(n+3)*fibonacci(n+4) - 2*(2+(-1)^n) for n in range(41)] # G. C. Greubel, Dec 31 2023

Formula

a(n) = b(6,n) = 4*A027941(n) + 9*A001654(n), with A027941(n) = Fibonacci(2*n+1) - 1 and A001654(n) = Fibonacci(n+1)*Fibonacci(n), n >= 0. 4 = Fibonacci(6)/2 and 9 = LucasL(6)/2.
O.g.f.: x*(13-5*x)/((1-x^2)*(1-3*x+x^2)) (see a comment above). - Wolfdieter Lang, Jul 30 2012
a(n) = (9*(-1)^(n+1) - 20 + Lucas(2*n + 7))/5. - Ehren Metcalfe, Aug 21 2017
From Colin Barker, Aug 25 2017: (Start)
a(n) = (1/10)*((29 - 13*sqrt(5))*((3 - sqrt(5))/2)^n + (29 + 13*sqrt(5))*((3 + sqrt(5))/2)^n - 2*(20 + 9*(-1)^n) ).
a(n) = 2*a(n-1) + 2*a(n-2) + 2*a(n-3) - a(n-4) for n>3. (End)
a(n) = A001654(n+3) - 2*(2 + (-1)^n). - G. C. Greubel, Dec 31 2023

A281619 Integer values of (A000045^2-1)/9 where A000045(m) is the m-th Fibonacci number.

Original entry on oeis.org

0, 7, 336, 880, 6032, 15792, 741895, 34853280, 91247072, 625416736, 1637362272, 76921173511, 3613657792752, 9460678925136, 64844458022832, 169764995085840, 7975341111241735, 374671267233275712, 980902112224710592, 6723203096097857600, 17601574218852716736, 826899317018844410887
Offset: 1

Views

Author

Michel Marcus, Jan 25 2017

Keywords

Comments

Also the integer values of A080097/9 where A080097(m) = Fibonacci(n+2)^2 - 1.
The indices of the Fibonacci numbers are 1, 2, 6, 10, and 11 mod 12. See the Wulczy link.

Crossrefs

Programs

  • Maple
    seq(seq((combinat:-fibonacci(12*m+j)^2-1)/9,j=[2,6,10,11,13]),m=0..20); # Robert Israel, Mar 05 2017
  • Mathematica
    Select[(#^2-1)/9&/@Fibonacci[Range[100]],IntegerQ] (* Harvey P. Dale, Feb 07 2017 *)
  • PARI
    lista(nn)=v = [1, 2, 6, 10, 11, 13, 14, 18, 22, 23]; for (n=1, nn, j = (n % #v) +1; k = n\#v; print1((fibonacci(24*k+v[j])^2-1)/9, ", "););
    
  • PARI
    a(n)=fibonacci(n\5*12+[1, 2, 6, 10, 11][n%5+1])^2\9 \\ Charles R Greathouse IV, Jan 26 2017

Formula

G.f.: x^2*(7*x^10+336*x^9+880*x^8+6032*x^7+15792*x^6+16114*x^5+15792*x^4
+6032*x^3+880*x^2+336*x+7)/(-x^15+103683*x^10-103683*x^5+1). - Robert Israel, Mar 05 2017
Previous Showing 11-15 of 15 results.