A335513
Numbers k such that the k-th composition in standard order (A066099) avoids the pattern (1,1,1).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 48, 49, 50, 52, 53, 54, 56, 58, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 88, 89
Offset: 1
The sequence of terms together with the corresponding compositions begins:
0: () 17: (4,1) 37: (3,2,1)
1: (1) 18: (3,2) 38: (3,1,2)
2: (2) 19: (3,1,1) 40: (2,4)
3: (1,1) 20: (2,3) 41: (2,3,1)
4: (3) 21: (2,2,1) 43: (2,2,1,1)
5: (2,1) 22: (2,1,2) 44: (2,1,3)
6: (1,2) 24: (1,4) 45: (2,1,2,1)
8: (4) 25: (1,3,1) 46: (2,1,1,2)
9: (3,1) 26: (1,2,2) 48: (1,5)
10: (2,2) 28: (1,1,3) 49: (1,4,1)
11: (2,1,1) 32: (6) 50: (1,3,2)
12: (1,3) 33: (5,1) 52: (1,2,3)
13: (1,2,1) 34: (4,2) 53: (1,2,2,1)
14: (1,1,2) 35: (4,1,1) 54: (1,2,1,2)
16: (5) 36: (3,3) 56: (1,1,4)
These compositions are counted by
A232432 (by sum).
The (1,1)-avoiding version is
A233564.
The complement
A335512 is the matching version.
Patterns avoiding (1,1,1) are counted by
A080599 (by length).
Non-unimodal compositions are counted by
A115981 and ranked by
A335373.
Combinatory separations are counted by
A269134.
Patterns matched by standard compositions are counted by
A335454.
Minimal patterns avoided by a standard composition are counted by
A335465.
Permutations of prime indices avoiding (1,1,1) are counted by
A335511.
-
stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
Select[Range[0,100],!MatchQ[stc[#],{_,x_,_,x_,_,x_,_}]&]
A052611
Expansion of e.g.f. 1/(1-2*x-2*x^2).
Original entry on oeis.org
1, 2, 12, 96, 1056, 14400, 236160, 4515840, 98703360, 2426941440, 66305433600, 1992646656000, 65328154214400, 2320237766246400, 88746105588940800, 3636883029491712000, 158978387626426368000, 7383729547341987840000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
[n le 2 select n else 2*(n-1)*Self(n-1) + 2*(n-1)*(n-2)*Self(n-2): n in [1..41]]; // G. C. Greubel, Jan 31 2023
-
spec := [S,{S=Sequence(Union(Z,Z,Prod(Z,Union(Z,Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[1/(1-2x-2x^2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 14 2015 *)
Table[n!*(-I*Sqrt[2])^(n)*ChebyshevU[n,I/Sqrt[2]], {n,0,40}] (* G. C. Greubel, Jan 31 2023 *)
-
A002605=BinaryRecurrenceSequence(2,2,0,1)
def A052611(n): return factorial(n)*A002605(n+1)
[A052611(n) for n in range(41)] # G. C. Greubel, Jan 31 2023
A240798
Total number of occurrences of the pattern 1=2=3 in all preferential arrangements (or ordered partitions) of n elements.
Original entry on oeis.org
0, 0, 1, 12, 130, 1500, 18935, 262248, 3972612, 65500200, 1169398065, 22494463860, 464072915878, 10225330604580, 239720548513355, 5959152063448080, 156592569864940040, 4337574220496785680, 126329273251232688069, 3859509516112803668220, 123426111134706786806890
Offset: 1
-
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+
[0, p[1]*binomial(j, 3)])(b(n-j))*binomial(n, j), j=1..n))
end:
a:= n-> b(n)[2]:
seq(a(n), n=1..25); # Alois P. Heinz, Dec 08 2014
-
b[n_] := b[n] = If[n==0, {1, 0}, Sum[Function[p, p+{0, p[[1]]*Binomial[j, 3]} ][b[n-j]]*Binomial[n, j], {j, 1, n}]]; a[n_] := b[n][[2]]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Feb 28 2017, after Alois P. Heinz *)
A320758
Number of ordered set partitions of [n] where the maximal block size equals two.
Original entry on oeis.org
1, 6, 42, 330, 2970, 30240, 345240, 4377240, 61122600, 933055200, 15470254800, 277005128400, 5329454130000, 109681187616000, 2404894892400000, 55977698400624000, 1378748676601296000, 35829233832135744000, 979763376201049440000, 28124715476056399200000
Offset: 2
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(2):
seq(a(n), n=2..25);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k] Binomial[n, i], {i, 1, Min[n, k]}]];
a[n_] := With[{k = 2}, b[n, k] - b[n, k-1]];
a /@ Range[2, 25] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A320759
Number of ordered set partitions of [n] where the maximal block size equals three.
Original entry on oeis.org
1, 8, 80, 860, 10290, 136080, 1977360, 31365600, 539847000, 10026139200, 199937337600, 4262167509600, 96744738090000, 2329950823200000, 59348032327584000, 1594257675506496000, 45047749044458160000, 1335740755933584000000, 41473196779273459200000
Offset: 3
-
b:= proc(n, k) option remember; `if`(n=0, 1, add(
b(n-i, k)*binomial(n, i), i=1..min(n, k)))
end:
a:= n-> (k-> b(n, k) -b(n, k-1))(3):
seq(a(n), n=3..25);
-
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k] Binomial[n, i], {i, 1, Min[n, k]}]];
a[n_] := With[{k = 3}, b[n, k] - b[n, k-1]];
a /@ Range[3, 25] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz *)
A355293
Expansion of e.g.f. 1 / (1 - x - x^2/2 - x^3/3).
Original entry on oeis.org
1, 1, 3, 14, 82, 610, 5450, 56700, 674520, 9027480, 134236200, 2195701200, 39180094800, 757389032400, 15767305554000, 351689317980000, 8367381470448000, 211518767796336000, 5661504152255952000, 159954273475764768000, 4757034049019572320000, 148547713504322452320000, 4859583724723970642400000
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - x - x^2/2 - x^3/3), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = a[1] = 1; a[2] = 3; a[n_] := a[n] = n a[n - 1] + n (n - 1) a[n - 2]/2 + n (n - 1) (n - 2) a[n - 3]/3; Table[a[n], {n, 0, 22}]
A355294
Expansion of e.g.f. 1 / (1 - x - x^2/2 - x^3/3 - x^4/4).
Original entry on oeis.org
1, 1, 3, 14, 88, 670, 6170, 66360, 815640, 11272800, 173132400, 2925014400, 53909394000, 1076365290000, 23144112591600, 533193460800000, 13102608591072000, 342105146182800000, 9457689380931792000, 275988880808825184000, 8477631163592791200000, 273430368958004818560000, 9238944655686318693120000
Offset: 0
-
nmax = 22; CoefficientList[Series[1/(1 - x - x^2/2 - x^3/3 - x^4/4), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = a[1] = 1; a[2] = 3; a[3] = 14; a[n_] := a[n] = n a[n - 1] + n (n - 1) a[n - 2]/2 + n (n - 1) (n - 2) a[n - 3]/3 + n (n - 1) (n - 2) (n - 3) a[n - 4]/4; Table[a[n], {n, 0, 22}]
A328286
Expansion of e.g.f. -log(1 - x - x^2/2).
Original entry on oeis.org
1, 2, 5, 21, 114, 780, 6390, 61110, 667800, 8210160, 112152600, 1685237400, 27624920400, 490572482400, 9381882510000, 192238348302000, 4201639474032000, 97572286427616000, 2399151995223984000, 62268748888378032000, 1701213856860117600000
Offset: 1
-
b:= proc(n) b(n):= n! * (<<1|1>, <1/2|0>>^n)[1, 1] end:
a:= proc(n) option remember; `if`(n=0, 0, b(n)-add(
binomial(n, j)*j*b(n-j)*a(j), j=1..n-1)/n)
end:
seq(a(n), n=1..25); # Alois P. Heinz, Oct 11 2019
-
nmax = 21; CoefficientList[Series[-Log[1 - x - x^2/2], {x, 0, nmax}], x] Range[0, nmax]! // Rest
FullSimplify[Table[(n - 1)! ((1 - Sqrt[3])^n + (1 + Sqrt[3])^n)/2^n, {n, 1, 21}]]
-
my(x='x+O('x^25)); Vec(serlaplace(-log(1 - x - x^2/2))) \\ Michel Marcus, Oct 11 2019
A346224
a(n) = (n!)^2 * Sum_{k=0..floor(n/2)} 1 / ((n-2*k)! * 4^k * k!).
Original entry on oeis.org
1, 1, 3, 15, 114, 1170, 15570, 256410, 5103000, 119773080, 3264445800, 101784097800, 3591396824400, 141958074258000, 6236035482877200, 302218901402418000, 16060366291617648000, 930654556409161584000, 58524794739862410960000, 3976525824684785163792000
Offset: 0
-
Table[(n!)^2 Sum[1/((n - 2 k)! 4^k k!), {k, 0, Floor[n/2]}], {n, 0, 19}]
nmax = 19; CoefficientList[Series[Exp[x + x^2/4], {x, 0, nmax}], x] Range[0, nmax]!^2
-
a(n) = (n!)^2 * sum(k=0, n\2, 1/((n-2*k)!*4^k*k!)); \\ Michel Marcus, Jul 17 2021
Comments