cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A379157 Prime powers p such that the interval from p to the next prime power contains a unique prime number.

Original entry on oeis.org

3, 4, 7, 9, 13, 16, 23, 27, 31, 32, 47, 49, 61, 64, 79, 81, 113, 125, 127, 128, 167, 169, 241, 243, 251, 256, 283, 289, 337, 343, 359, 361, 509, 512, 523, 529, 619, 625, 727, 729, 839, 841, 953, 961, 1021, 1024, 1327, 1331, 1367, 1369, 1669, 1681, 1847, 1849
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Examples

			The next prime power after 32 is 37, with interval (32,33,34,35,36,37) containing just one prime 37, so 32 is in the sequence.
		

Crossrefs

For no primes we have A068315/A379156, for perfect powers A116086/A274605.
The previous instead of next prime power we have A175106.
For perfect powers instead of prime powers we have A378355.
The positions of these prime powers (in A246655) are A379155.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.
A366835 counts primes between prime powers, for perfect powers A080769.

Programs

  • Mathematica
    v=Select[Range[100],PrimePowerQ]
    nextpripow[n_]:=NestWhile[#+1&,n+1,!PrimePowerQ[#]&]
    Select[v,Length[Select[Range[#,nextpripow[#]],PrimeQ]]==1&]

Formula

a(n) = A246655(A379155(n)).

A378253 Perfect powers p such that there are no other perfect powers between p and the least prime > p.

Original entry on oeis.org

1, 4, 9, 16, 27, 36, 49, 64, 81, 100, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.
Each term is the greatest perfect power < prime(k) for some k.

Examples

			The first number line below shows the perfect powers. The second shows each prime. To get a(n), we take the last perfect power in each interval between consecutive primes, omitting the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===2=3===5===7======11==13======17==19======23==========29==31==========37==
		

Crossrefs

Union of A378035, restriction of A081676 to the primes.
The opposite is A378250, union of A378249 (run-lengths A378251).
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non-perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A080769 counts primes between perfect powers.
A377283 ranks perfect powers between primes, differences A378356.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Union[Table[NestWhile[#-1&,Prime[n],radQ[#]&],{n,1000}]]

A378368 Positions (in A001597) of consecutive perfect powers with a unique prime between them.

Original entry on oeis.org

15, 20, 22, 295, 1257
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root.
The perfect powers themselves are given by A001597(a(n)) = A378355(n).

Examples

			The 15th and 16th perfect powers are 125 and 128, and 127 is the only prime between them, so 15 is in the sequence.
		

Crossrefs

These are the positions of 1 in A080769.
The next prime after A001597(a(n)) is A178700(n).
For no (instead of one) perfect powers we have A274605.
Swapping 'prime' and 'perfect power' gives A377434, unique case of A377283.
The next perfect power after A001597(a(n)) is A378374(n).
For prime powers instead of perfect powers we have A379155.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A081676 gives the greatest perfect power <= n.
A377432 counts perfect powers between primes, see A377436, A377466.
A377468 gives the least perfect power > n.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    v=Select[Range[1000],perpowQ];
    Select[Range[Length[v]-1],Length[Select[Range[v[[#]],v[[#+1]]],PrimeQ]]==1&]

Formula

We have A001597(a(n)) = A378355(n) < A178700(n) < A378374(n).

A378373 Number of composite numbers (A002808) between consecutive nonsquarefree numbers (A013929), exclusive.

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 2, 0, 1, 0, 1, 3, 2, 1, 0, 1, 0, 0, 1, 0, 1, 2, 1, 0, 2, 2, 1, 0, 2, 0, 1, 3, 0, 1, 3, 0, 0, 0, 1, 2, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 1, 3, 2, 0, 0, 0, 0, 2, 2, 1, 0, 2, 0, 1, 0, 1, 0, 2, 2, 3, 0, 1, 2, 0, 0, 3, 2, 0, 2, 3, 3, 2, 0, 1, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2024

Keywords

Comments

All terms are 0, 1, 2, or 3 (cf. A078147).
The inclusive version is a(n) + 2.
The nonsquarefree numbers begin: 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, ...

Examples

			The composite numbers counted by a(n) form the following set partition of A120944:
{6}, {}, {10}, {14,15}, {}, {}, {21,22}, {}, {26}, {}, {30}, {33,34,35}, {38,39}, ...
		

Crossrefs

For prime (instead of nonsquarefree) we have A046933.
For squarefree (instead of nonsquarefree) we have A076259(n)-1.
For prime power (instead of nonsquarefree) we have A093555.
For prime instead of composite we have A236575.
For nonprime prime power (instead of nonsquarefree) we have A378456.
For perfect power (instead of nonsquarefree) we have A378614, primes A080769.
A002808 lists the composite numbers.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A073247 lists squarefree numbers with nonsquarefree neighbors.
A120944 lists squarefree composite numbers.
A377432 counts perfect-powers between primes, zeros A377436.
A378369 gives distance to the next nonsquarefree number (A120327).

Programs

  • Mathematica
    v=Select[Range[100],!SquareFreeQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]

A378374 Perfect powers p such that the interval from the previous perfect power to p contains a unique prime.

Original entry on oeis.org

128, 225, 256, 64009, 1295044
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2024

Keywords

Comments

Also numbers appearing exactly once in A378249.

Examples

			The consecutive perfect powers 125 and 128 have interval (125, 126, 127, 128) with unique prime 127, so 128 is in the sequence.
		

Crossrefs

The previous prime is A178700.
For prime powers instead of perfect powers we have A345531, difference A377281.
Opposite singletons in A378035 (union A378253), restriction of A081676.
For squarefree numbers we have A378082, see A377430, A061398, A377431, A068360.
Singletons in A378249 (run-lengths A378251), restriction of A377468 to the primes.
If the same interval contains at least one prime we get A378250.
For next instead of previous perfect power we have A378355.
Swapping "prime" with "perfect power" gives A378364.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A080769 counts primes between perfect powers.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    y=Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==1&]

Formula

We have a(n) < A178700(n) < A378355(n).

A379156 Positions in A246655 (prime powers) of terms q such that there is no prime between q and the next prime power.

Original entry on oeis.org

6, 14, 41, 359, 3589
Offset: 1

Views

Author

Gus Wiseman, Dec 22 2024

Keywords

Comments

The powers of primes themselves are 8, 25, 121, 2187, 32761, ... (A068315).

Crossrefs

The prime powers themselves are A068315, for just one prime A379157.
For perfect powers instead of prime powers we have A274605.
Positions of 0 in A366835.
For just one prime we have A379155, for perfect powers A378368.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A131605 finds perfect powers that are not prime powers.
A246655 lists the prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],FreeQ[Range[v[[#]],v[[#+1]]],_?PrimeQ]&]

Formula

A246655(a(n)) = A068315(n).

A378365 Next prime index after each perfect power, duplicates removed.

Original entry on oeis.org

1, 3, 5, 7, 10, 12, 16, 19, 23, 26, 31, 32, 35, 40, 45, 48, 49, 54, 55, 62, 67, 69, 73, 79, 86, 93, 98, 100, 106, 115, 123, 130, 138, 147, 155, 163, 169, 173, 182, 192, 201, 211, 218, 220, 229, 241, 252, 264, 270, 275, 284, 296, 307, 310, 320, 328, 330, 343
Offset: 1

Views

Author

Gus Wiseman, Nov 26 2024

Keywords

Comments

Perfect powers (A001597) are 1 and numbers with a proper integer root, complement A007916.

Examples

			The first number line below shows the perfect powers. The second shows each n at position prime(n). To get a(n), we take the first prime between each pair of consecutive perfect powers, skipping the cases where there are none.
-1-----4-------8-9------------16----------------25--27--------32------36----
===1=2===3===4=======5===6=======7===8=======9==========10==11==========12==
		

Crossrefs

The opposite version is A377283.
Positions of first appearances in A378035.
First differences are A378251.
Union of A378356.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A080769 counts primes between perfect powers.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.
A378249 gives the least perfect power > prime(n), restriction of A377468.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Union[1+Table[PrimePi[n],{n,Select[Range[100],perpowQ]}]]

Formula

These are the distinct elements of the set {1 + A000720(A151800(n)), n>0}.

A308658 Square array read by downward antidiagonals: A(n, k) is the number of primes between the n-th and (n+k)-th perfect powers with exponent > 1, k > 0.

Original entry on oeis.org

2, 4, 2, 4, 2, 0, 6, 4, 2, 2, 9, 7, 5, 5, 3, 9, 7, 5, 5, 3, 0, 11, 9, 7, 7, 5, 2, 2, 11, 9, 7, 7, 5, 2, 2, 0, 15, 13, 11, 11, 9, 6, 6, 4, 4, 18, 16, 14, 14, 12, 9, 9, 7, 7, 3, 22, 20, 18, 18, 16, 13, 13, 11, 11, 7, 4, 25, 23, 21, 21, 19, 16, 16, 14, 14, 10, 7
Offset: 1

Views

Author

Felix Fröhlich, Nov 16 2019

Keywords

Comments

The Redmond-Sun conjecture implies that A(n, 1) is 0 for only finitely many values of n and A(n, k) > 0 for all n and k when k > 1.

Examples

			The array starts as follows:
  k = 1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17
     --------------------------------------------------------------------------
n= 1| 2,  4,  4,  6,  9,  9, 11, 11, 15,  18,  22,  25,  30,  30,  31,  34,  39
n= 2| 2,  2,  4,  7,  7,  9,  9, 13, 16,  20,  23,  28,  28,  29,  32,  37,  42
n= 3| 0,  2,  5,  5,  7,  7, 11, 14, 18,  21,  26,  26,  27,  30,  35,  40,  43
n= 4| 2,  5,  5,  7,  7, 11, 14, 18, 21,  26,  26,  27,  30,  35,  40,  43,  44
n= 5| 3,  3,  5,  5,  9, 12, 16, 19, 24,  24,  25,  28,  33,  38,  41,  42,  47
n= 6| 0,  2,  2,  6,  9, 13, 16, 21, 21,  22,  25,  30,  35,  38,  39,  44,  45
n= 7| 2,  2,  6,  9, 13, 16, 21, 21, 22,  25,  30,  35,  38,  39,  44,  45,  52
n= 8| 0,  4,  7, 11, 14, 19, 19, 20, 23,  28,  33,  36,  37,  42,  43,  50,  55
n= 9| 4,  7, 11, 14, 19, 19, 20, 23, 28,  33,  36,  37,  42,  43,  50,  55,  57
n=10| 3,  7, 10, 15, 15, 16, 19, 24, 29,  32,  33,  38,  39,  46,  51,  53,  57
n=11| 4,  7, 12, 12, 13, 16, 21, 26, 29,  30,  35,  36,  43,  48,  50,  54,  60
n=12| 3,  8,  8,  9, 12, 17, 22, 25, 26,  31,  32,  39,  44,  46,  50,  56,  63
n=13| 5,  5,  6,  9, 14, 19, 22, 23, 28,  29,  36,  41,  43,  47,  53,  60,  67
n=14| 0,  1,  4,  9, 14, 17, 18, 23, 24,  31,  36,  38,  42,  48,  55,  62,  67
n=15| 1,  4,  9, 14, 17, 18, 23, 24, 31,  36,  38,  42,  48,  55,  62,  67,  69
n=16| 3,  8, 13, 16, 17, 22, 23, 30, 35,  37,  41,  47,  54,  61,  66,  68,  74
n=17| 5, 10, 13, 14, 19, 20, 27, 32, 34,  38,  44,  51,  58,  63,  65,  71,  80
n=18| 5,  8,  9, 14, 15, 22, 27, 29, 33,  39,  46,  53,  58,  60,  66,  75,  83
n=19| 3,  4,  9, 10, 17, 22, 24, 28, 34,  41,  48,  53,  55,  61,  70,  78,  85
n=20| 1,  6,  7, 14, 19, 21, 25, 31, 38,  45,  50,  52,  58,  67,  75,  82,  90
.
For instance let n = k = 6, then
A(n, k) = A000720(A001597(n+k)) - A000720(A001597(n))
= A000720(A001597(12)) - A000720(A001597(6))
= A000720(81) - A000720(25) = 22 - 9 = 13.
		

Crossrefs

Cf. A000720, A001597, A080769 (column 1), A274605.

Programs

  • PARI
    power(n) = if(n==1, return(1)); my(i=1); for(k=2, oo, if(ispower(k), i++); if(i==n, return(k)))
    array(n, k) = for(x=1, n, for(y=x+1, x+k, print1(primepi(power(y))-primepi(power(x)), ", ")); print(""))
    array(10, 20) \\ Print initial 10 rows and 20 columns of array
    
  • SageMath
    perfpower = [0]+[k for k in srange(1, 300) if k.is_perfect_power()]
    primepi   = [0]+[prime_pi(k) for k in srange(1, 300)]
    def A308658(n, k): return primepi[perfpower[n+k]] - primepi[perfpower[n]]
    for n in (1..10): print([A308658(n, k) for k in (1..10)]) # Peter Luschny, Nov 18 2019

Formula

A(n, k) = A000720(A001597(n+k)) - A000720(A001597(n)), k > 0.
A(A274605(n), 1) = 0.
A(n,k) = Sum_{j=n..n+k-1} A(j,1) = A(n,k-1) + A(n+k-1,1) for k > 1. - Pontus von Brömssen, Nov 05 2024

A378614 Number of composite numbers (A002808) between consecutive perfect powers (A001597), exclusive.

Original entry on oeis.org

0, 1, 0, 4, 5, 1, 2, 3, 8, 11, 12, 15, 15, 3, 1, 12, 19, 21, 16, 7, 12, 11, 25, 29, 16, 13, 32, 33, 35, 22, 14, 40, 39, 42, 45, 46, 47, 50, 52, 32, 19, 55, 56, 59, 60, 27, 35, 65, 64, 67, 68, 40, 30, 75, 74, 77, 19, 57, 62, 9, 9, 81, 81, 88, 89, 87, 32, 55, 94
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2024

Keywords

Comments

The inclusive version is a(n) + 2.

Examples

			The composite numbers counted by a(n) cover A106543 with the following disjoint sets:
  .
  6
  .
  10 12 14 15
  18 20 21 22 24
  26
  28 30
  33 34 35
  38 39 40 42 44 45 46 48
  50 51 52 54 55 56 57 58 60 62 63
		

Crossrefs

For prime instead of perfect power we have A046933.
For prime instead of composite we have A080769.
For nonsquarefree instead of perfect power we have A378373, for primes A236575.
For nonprime prime power instead of perfect power we have A378456.
A001597 lists the perfect powers, differences A053289.
A002808 lists the composite numbers.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A106543 lists the composite non perfect powers.
A377432 counts perfect powers between primes, see A377434, A377436, A377466.
A378365 gives the least prime > each perfect power, opposite A377283.

Programs

  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    v=Select[Range[100],perpowQ[#]&];
    Table[Length[Select[Range[v[[i]]+1,v[[i+1]]-1],CompositeQ]],{i,Length[v]-1}]
  • Python
    from sympy import mobius, integer_nthroot, primepi
    def A378614(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-1+sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        return -(a:=bisection(f,n,n))+(b:=bisection(lambda x:f(x)+1,a+1,a+1))-primepi(b)+primepi(a)-1 # Chai Wah Wu, Dec 03 2024

A379158 Numbers m such that the consecutive prime powers A246655(m) and A246655(m+1) are both prime.

Original entry on oeis.org

1, 4, 8, 11, 12, 16, 19, 20, 21, 24, 25, 28, 29, 30, 33, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 79, 80, 81, 82, 83, 84, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2024

Keywords

Comments

Also positions of 2 in A366835.

Examples

			The 4th and 5th prime powers are 5 and 7, which are both prime, so 4 is in the sequence.
The 12th and 13th prime powers are 19 and 23, which are both prime, so 12 is in the sequence.
		

Crossrefs

Positions of adjacent primes in A246655 (prime powers).
Positions of 2 in A366835.
For just one prime we have A379155, positions of prime powers in A379157.
For no primes we have A379156, positions of prime powers in A068315.
The primes powers themselves are A379541.
A000015 gives the least prime power >= n.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A031218 gives the greatest prime power <= n.
A065514 gives the greatest prime power < prime(n), difference A377289.
A131605 finds perfect powers that are not prime powers.
A366833 counts prime powers between primes, see A053607, A304521.

Programs

  • Mathematica
    v=Select[Range[100],PrimePowerQ];
    Select[Range[Length[v]-1],PrimeQ[v[[#]]]&&PrimeQ[v[[#+1]]]&]

Formula

A246655(a(n)) = A379541(n).
Previous Showing 11-20 of 21 results. Next