cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A379975 A373711(n) is equal to the a(n)-th A379973(n)-gonal pyramidal number.

Original entry on oeis.org

0, 1, 3, 8, 5, 6, 11, 10, 20, 24, 18, 34, 17, 25, 15, 46, 33, 34, 26, 73, 28, 106, 145, 190, 204, 241, 162, 298, 113, 361, 103, 430, 505, 586, 673, 766, 865, 970, 1081, 624, 1198, 1321, 420, 1450, 1585, 1726
Offset: 1

Views

Author

Pontus von Brömssen, Jan 08 2025

Keywords

Comments

Indices to pyramidal numbers are chosen so that the first k-gonal pyramidal number is 1 (and the zeroth is 0).

Crossrefs

Formula

A080851(A379973(n)-2,a(n)-1) = A373711(n).

A275490 Square array of 5D pyramidal numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 5, 1, 6, 15, 1, 7, 21, 35, 1, 8, 27, 56, 70, 1, 9, 33, 77, 126, 126, 1, 10, 39, 98, 182, 252, 210, 1, 11, 45, 119, 238, 378, 462, 330, 1, 12, 51, 140, 294, 504, 714, 792, 495, 1, 13, 57, 161, 350, 630, 966, 1254, 1287, 715, 1, 14, 63, 182, 406, 756, 1218, 1716, 2079, 2002, 1001
Offset: 2

Views

Author

R. J. Mathar, Jul 30 2016

Keywords

Comments

Let F(r,n,d) = binomial(r+d-2,d-1)* ((r-1)*(n-2)+d) /d be the d-dimensional pyramidal numbers. Then A(n,k) = F(k,n,5).
Sum of the n-th antidiagonal is binomial(n+4,7) + binomial(n+4,5) = A055797(n-1). - Mathew Englander, Oct 27 2020

Examples

			The array starts in rows n>=2 and columns k>=1 as
   1    5   15   35   70  126  210  330  495   715  1001  1365  1820
   1    6   21   56  126  252  462  792 1287  2002  3003  4368  6188
   1    7   27   77  182  378  714 1254 2079  3289  5005  7371 10556
   1    8   33   98  238  504  966 1716 2871  4576  7007 10374 14924
   1    9   39  119  294  630 1218 2178 3663  5863  9009 13377 19292
   1   10   45  140  350  756 1470 2640 4455  7150 11011 16380 23660
   1   11   51  161  406  882 1722 3102 5247  8437 13013 19383 28028
   1   12   57  182  462 1008 1974 3564 6039  9724 15015 22386 32396
   1   13   63  203  518 1134 2226 4026 6831 11011 17017 25389 36764
		

Crossrefs

Cf. Row sums of A080852 (4D), A080851 (3D), A057145 (2D), A077028 (1D).
Cf. A055797.

Programs

  • Mathematica
    Table[Binomial[k + 3, 4] + (# - 2)*Binomial[k + 3, 5] &[m - k + 1], {m, 2, 12}, {k, m - 1}] // Flatten (* Michael De Vlieger, Nov 05 2020 *)

Formula

A(n+2,k) = Sum_{j=0..k-1} A080852(n,j).
A(n,k) = binomial(k+3,4) + (n-2)*binomial(k+3,5). - Mathew Englander, Oct 27 2020

A333916 a(n) is the least integer that is pyramidal in exactly n ways.

Original entry on oeis.org

4, 10, 30, 550, 1540, 48070, 223300, 2634940, 402610950, 1570545340, 13960282700, 5677137442900, 248297918605660
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2020

Keywords

Comments

a(n) has exactly n representations as an m-gonal pyramidal number P(m, k) = k*(k + 1)*(k*(m - 2) - m + 5) / 6, with m > 2, k > 1.
a(12) > 5*10^11. - Giovanni Resta, Apr 11 2020

Examples

			a(3) = 30 because 30 is the least integer which is pyramidal in 3 ways (30 is the fourth square pyramidal number, the third octagonal pyramidal number and also the second 31-gonal pyramidal number).
		

Crossrefs

Extensions

a(9) from Jinyuan Wang, Apr 10 2020
a(10)-a(11) from Giovanni Resta, Apr 10 2020
a(12)-a(13) from Bert Dobbelaere, Apr 12 2020

A352350 a(n) is the largest number that is not the sum of distinct n-gonal pyramidal numbers.

Original entry on oeis.org

558, 1528, 2266, 3362, 5117, 6157, 9808, 9947, 13904, 17340, 17187, 19912, 27719
Offset: 3

Views

Author

Ilya Gutkovskiy, Mar 12 2022

Keywords

Crossrefs

A333914 a(n) is the least integer m >= 3 such that n is m-gonal pyramidal number.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 3, 10, 11, 12, 4, 14, 15, 16, 5, 18, 3, 20, 6, 22, 23, 24, 7, 26, 27, 28, 4, 30, 31, 32, 9, 3, 35, 36, 10, 38, 5, 40, 11, 42, 43, 44, 12, 46, 47, 48, 6, 50, 51, 52, 14, 4, 3, 56, 15, 58, 7, 60, 16, 62, 63, 64, 17, 66, 67, 68, 8, 70, 71, 72, 19, 5, 75, 76, 20, 78, 9
Offset: 4

Views

Author

Ilya Gutkovskiy, Apr 09 2020

Keywords

Examples

			a(18) = 5 since 18 is a pentagonal pyramidal number, but not a square pyramidal or tetrahedral number.
		

Crossrefs

A333915 Number of ways to represent n as a pyramidal number.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2
Offset: 4

Views

Author

Ilya Gutkovskiy, Apr 09 2020

Keywords

Comments

Frequency of n in the array A261720 of pyramidal numbers.

Examples

			a(10) = 2 because 10 is the third tetrahedral (or triangular pyramidal) number and also the second 9-gonal pyramidal number.
a(30) = 3 because 30 is the fourth square pyramidal number, the third octagonal pyramidal number and also the second 29-gonal pyramidal number.
		

Crossrefs

A352585 Number of positive integers that are not the sum of distinct n-gonal pyramidal numbers.

Original entry on oeis.org

112, 306, 531, 888, 1383, 1686, 2538, 2986, 3993, 4540, 5086, 6270, 7298
Offset: 3

Views

Author

Ilya Gutkovskiy, Mar 21 2022

Keywords

Crossrefs

A374499 Least n-gonal pyramidal number that can be written as a product of two or more smaller n-gonal pyramidal numbers, or 0 if no such number exists.

Original entry on oeis.org

36, 560, 4900, 56448, 4750, 58372180608, 1130220, 6252757280000
Offset: 2

Views

Author

Pontus von Brömssen, Jul 09 2024

Keywords

Comments

a(11) = 4200, a(13) = 5521090680, a(14) = 748980.

Examples

			For 2 <= n <= 9, the n-gonal pyramidal number a(n) can be written as a product of smaller n-gonal pyramidal numbers in the following ways:
  n |             a(n)
  --+-------------------------------------
  2 |            36 = 6*6
  3 |           560 = 4*4*35 = 10*56
  4 |          4900 = 5*5*14*14
  5 |         56448 = 196*288
  6 |          4750 = 50*95
  7 |   58372180608 = 196*456*653108
  8 |       1130220 = 9*70*1794
  9 | 6252757280000 = 10*10*10*80*78159466
		

Crossrefs

Second column of A374498.

A301972 a(n) = n*(n^2 - 2*n + 4)*binomial(2*n,n)/((n + 1)*(n + 2)).

Original entry on oeis.org

0, 1, 4, 21, 112, 570, 2772, 13013, 59488, 266526, 1175720, 5123426, 22108704, 94645460, 402503220, 1702300725, 7165821120, 30043474230, 125523450360, 522857438070, 2172127120800, 9002522512620, 37233403401480, 153704429299746, 633442159732032, 2606543487445100, 10710790748646352, 43957192722175908
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 29 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the main diagonal of iterated partial sums array of n-gonal numbers (in other words, a(n) is the n-th (n+2)-dimensional n-gonal number, see also example).

Examples

			For n = 5 we have:
----------------------------
0   1    2    3     4    [5]
----------------------------
0,  1,   5,  12,   22,   35,  ... A000326 (pentagonal numbers)
0,  1,   6,  18,   40,   75,  ... A002411 (pentagonal pyramidal numbers)
0,  1,   7,  25,   65,  140,  ... A001296 (4-dimensional pyramidal numbers)
0,  1,   8,  33,   98,  238,  ... A051836 (partial sums of A001296)
0,  1,   9,  42,  140,  378,  ... A051923 (partial sums of A051836)
0,  1,  10,  52,  192, [570], ... A050494 (partial sums of A051923)
----------------------------
therefore a(5) = 570.
		

Crossrefs

Programs

  • Mathematica
    Table[n (n^2 - 2 n + 4) Binomial[2 n, n]/((n + 1) (n + 2)), {n, 0, 27}]
    nmax = 27; CoefficientList[Series[(-4 + 31 x - 66 x^2 + 28 x^3 + (4 - 7 x) (1 - 4 x)^(3/2))/(2 x^2 (1 - 4 x)^(3/2)), {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[2 x] (4 - x + 2 x^2) BesselI[1, 2 x]/x - 2 Exp[2 x] (2 - x) BesselI[0, 2 x], {x, 0, nmax}], x] Range[0, nmax]!
    Table[SeriesCoefficient[x (1 - 3 x + n x)/(1 - x)^(n + 3), {x, 0, n}], {n, 0, 27}]

Formula

O.g.f.: (-4 + 31*x - 66*x^2 + 28*x^3 + (4 - 7*x)*(1 - 4*x)^(3/2))/(2*x^2*(1 - 4*x)^(3/2)).
E.g.f.: exp(2*x)*(4 - x + 2*x^2)*BesselI(1,2*x)/x - 2*exp(2*x)*(2 - x)*BesselI(0,2*x).
a(n) = [x^n] x*(1 - 3*x + n*x)/(1 - x)^(n+3).
a(n) ~ 4^n*sqrt(n)/sqrt(Pi).
D-finite with recurrence: -(n+2)*(961*n-3215)*a(n) +4*(2081*n^2-4414*n-4668)*a(n-1) -28*(320*n-389)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 27 2020

A308488 a(n) is the smallest n-gonal pyramidal number greater than 1 which is also n-gonal; a(n) = 0 when one does not exist.

Original entry on oeis.org

10, 4900, 0, 946, 0, 1045, 0, 175, 23725, 0, 0, 441, 0, 0, 975061, 0, 0, 3578401, 0, 0, 10680265, 0, 0, 27453385, 0, 0, 63016921, 23001, 0, 132361021, 0, 0, 258815701, 0, 0, 477132085, 0, 0, 55202400, 0, 245905, 1408778281, 0, 0, 2286380881, 0, 0, 314755, 0, 0
Offset: 3

Views

Author

Davis Smith, Aug 22 2019

Keywords

Comments

a(n) is the smallest n-gonal number, N, such that, for some m > 1, N is the sum of the first m n-gonal numbers, 0 when one does not exist.
For n > 5, if n == 2 (mod 3), then a(n) > 0 and a(n) <= A080851(n - 2,((n-2)^2)/3 - 3), but there are cases where a(n) > 0 and n !== 2 (mod 3), e.g., a(10).

Crossrefs

Programs

  • PARI
    A308488_vec(lim,J=10^6)={my(
        pyramid(s,n)=(3*n^2 + n^3*(s-2)-n*(s-5))/6,
        check(s)=j=if(lift(Mod(s,3))==2,((s-2)^2)/3-2,J);m=3;while(m<=j,if(ispolygonal(pyramid(s,m),s),return(pyramid(s,m)),m++));0);
    vector(lim,s,check(s+2))}
Previous Showing 21-30 of 32 results. Next