cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A214731 a(n) = n^3 - 2*n^2 - 1.

Original entry on oeis.org

-2, -1, 8, 31, 74, 143, 244, 383, 566, 799, 1088, 1439, 1858, 2351, 2924, 3583, 4334, 5183, 6136, 7199, 8378, 9679, 11108, 12671, 14374, 16223, 18224, 20383, 22706, 25199, 27868, 30719, 33758, 36991, 40424, 44063, 47914, 51983, 56276, 60799, 65558, 70559
Offset: 1

Views

Author

Marco Piazzalunga, Jul 27 2012

Keywords

Crossrefs

Cf. A080859, A085490, A144390 (first differences), A152619.
Similar sequences: A152015 (of the type m^3+2m^2-1), A081437 (m^3-2m^2+1).

Programs

Formula

From Bruno Berselli, Jul 27 2012: (Start)
G.f.: -x*(2-7*x-x^3)/(1-x)^4.
a(n) = A085490(n-1) + 2.
a(n) = A152619(n-2) - 1 for n>1.
a(n) - a(n-2) = A080859(n-2) - 1 for n>2. (End)
E.g.f.: 1 - (1-x)*(1+x)^2*exp(x). - G. C. Greubel, Dec 31 2023

Extensions

a(3) corrected by Charles R Greathouse IV, Jul 27 2012

A372220 Four-column table read by rows: row n is the unique primitive Pythagorean quadruple (a,b,c,d) such that a > (a + b + c - d)/2 = 2n(n + 1) and b = c.

Original entry on oeis.org

17, 20, 20, 33, 31, 42, 42, 67, 49, 72, 72, 113, 71, 110, 110, 171, 97, 156, 156, 241, 127, 210, 210, 323, 161, 272, 272, 417, 199, 342, 342, 523, 241, 420, 420, 641, 287, 506, 506, 771, 337, 600, 600, 913, 391, 702, 702, 1067, 449, 812, 812, 1233, 511, 930, 930, 1411, 577, 1056, 1056, 1601
Offset: 2

Views

Author

Keywords

Comments

A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.

Examples

			Table begins:
  n=2:   17,   20,    20,    33;
  n=3:   31,   42,    42,    67;
  n=4:   49,   72,    72,   113;
  n=5:   71,  110,   110,   171;
  n=6:   97,  156,   156,   241;
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.

Crossrefs

Cf. A372219, A056220 (first column), A002943 (second column), A080859 (fourth column).

Programs

  • Mathematica
    cuaternas={};Do[cuaternas=Join[cuaternas,{2n^2+4n+1,4n^2+2n,4n^2+2n,6n^2+4n+1}],{n,2,35}];cuaternas

Formula

Row n = (a, b, c, d) = (2n^2 + 4n + 1, 4n^2 + 2n, 4n^2 + 2n, 6n^2 + 4n + 1).
Previous Showing 11-12 of 12 results.