cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 56 results. Next

A091401 Numbers n such that genus of group Gamma_0(n) is zero.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Comments

Equivalently, numbers n such that genus of modular curve X_0(n) is zero.

References

  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see Prop. 1.40 and 1.43.

Crossrefs

The table below is a consequence of Theorem 7.3 in Maier's paper.
N EntryID K alpha
1
2 A127776 4096 1
3 A276018 729 1
4 A002894 256 1
5 A276019 125 4
6 A093388 72 1
7 A276021 49 9
8 A081085 32 1
9 A006077 27 1
10 A276020 20 2
12 A276022 12 1
13 A276177 13 36
16 A276178 8 1
18 A276179 6 1
25 A276180 5 4

Programs

Formula

Numbers n such that A001617(n) = 0.

A060691 Expansion of AGM(1,1-8x) (where AGM denotes the arithmetic-geometric mean).

Original entry on oeis.org

1, -4, -4, -16, -84, -496, -3120, -20416, -137300, -942384, -6572336, -46432960, -331580272, -2389352256, -17351364160, -126851634432, -932823545428, -6895102385072, -51199649648048, -381738099675840, -2856639909232112
Offset: 0

Views

Author

Roland Bacher, Apr 20 2001

Keywords

Crossrefs

Cf. A081085.

Programs

  • Mathematica
    CoefficientList[Series[1/Hypergeometric2F1[1/2, 1/2, 1, 16*x*(1 - 4*x)], {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 13 2019 *)
    CoefficientList[Series[Pi*(1 - 4*x)/(2*EllipticK[1/(1 - 1/(4*x))^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Jan 13 2019 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(agm(1,1-8*x+x*O(x^n)),n))

Formula

G.f.: AGM(1, 1-8x).
a(n) ~ -Pi * 2^(3*n-1) / (n * log(n)^2) * (1 - (2*gamma + 4*log(2))/log(n) + (3*gamma^2 + 12*log(2)*gamma + 12*log(2)^2 - Pi^2/2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

Extensions

Edited by Michael Somos, Jul 19 2002

A053175 Catalan-Larcombe-French sequence.

Original entry on oeis.org

1, 8, 80, 896, 10816, 137728, 1823744, 24862720, 346498048, 4911669248, 70560071680, 1024576061440, 15008466534400, 221460239482880, 3287994183188480, 49074667327062016, 735814252604162048
Offset: 0

Views

Author

Peter J Larcombe, Nov 12 2001

Keywords

Comments

These numbers were proposed as 'Catalan' numbers by an associate of Catalan. They appear as coefficients in the series expansion of an elliptic integral of the first kind. Defining f(x; c) = 1 /(1 - c^2*sin^2(x))^(1/2), consider the function I(c) obtained by integrating f(x; c) with respect to x between 0 and Pi/2. I(c) is transformed and written as a power series in c (through an intermediate variable) which acts as a generating function for the sequence.
Conjecture: Let P(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0,...,n. Then P(n)/2^(n*(n+3)) is a positive odd integer. - Zhi-Wei Sun, Aug 14 2013

Examples

			G.f. = 1 + 8*x + 80*x^2 + 896*x^3 + 10816*x^4 + 137728*x^5 + 1823774*x^6 + ...
		

References

  • P. J. Larcombe, D. R. French and E. J. Fennessey, The asymptotic behavior of the Catalan-Larcombe-French sequence {1, 8, 80, 896, 10816, ...}, Utilitas Mathematica, 60 (2001), 67-77.
  • P. J. Larcombe, D. R. French and C. A. Woodham, A note on the asymptotic behavior of a prime factor decomposition of the general Catalan-Larcombe-French number, Congressus Numerantium, 156 (2002), 17-25.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 elif n = 1 then 8 else (8*(3*n^2 -3*n+1)*a(n-1)-128*(n-1)^2*a(n-2))/n^2 fi end; # Peter Luschny, Jun 26 2009
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticK[ (8 x /(1 - 8 x))^2] / ((1 - 8 x) Pi/2), {x, 0, n}]; (* Michael Somos, Aug 01 2011 *)
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ 8 x] BesselI[ 0, 4 x]^2, {x, 0, n}]]; (* Michael Somos, Aug 01 2011 *)
    Table[(-8)^n Sqrt[Pi] HypergeometricPFQRegularized[{1/2, -n, -n}, {1, 1/2 - n}, -1]/n!, {n, 0, 20}] (* Vladimir Reshetnikov, May 21 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / agm( 1, 1 - 16*x + x * O(x^n)), n))}; /* Michael Somos, Feb 12 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=0, n, binomial( 2*k ,k)^2 * (2*x - 16*x^2)^k, x * O(x^n)), n))}; /* Michael Somos, Mar 04 2003 */

Formula

G.f.: 1 / AGM(1, 1 - 16*x) = 2 * EllipticK(8*x / (1-8*x)) / ((1-8*x)*Pi), where AGM(x, y) is the arithmetic-geometric mean of Gauss and Legendre. Cf. A081085, A089602. - Michael Somos, Mar 04 2003 and Vladeta Jovovic, Dec 30 2003
E.g.f.: exp(8*x)*BesselI(0, 4*x)^2. - Vladeta Jovovic, Aug 20 2003
a(n)*n^2 = a(n-1)*8*(3*n^2 - 3*n + 1) - a(n-2)*128*(n-1)^2. - Michael Somos, Apr 01 2003
Exponential convolution of A059304 with itself: Sum(2^n*binomial(2*n, n)*x^n/n!, n=0..infinity)^2 = (BesselI(0, 4*x)*exp(4*x))^2 = hypergeom([1/2], [1], 8*x)^2. - Vladeta Jovovic, Sep 09 2003
a(n) ~ 2^(4n+1)/(Pi*n). - Vaclav Kotesovec, Oct 09 2012
a(n) = 2^n*Sum_{k=0..n} C(n,k)*C(2*k,k)*C(2(n-k),n-k), where C(n,k)=n!/(k!*(n-k)!). This formula has been proved via the Zeilberger algorithm (both sides of the equality satisfy the same recurrence relation). a(n)/2^n also has another expression: Sum_{k=0..floor(n/2)} C(n,2*k)*C(2*k,k)^2*4^(n-2*k). - Zhi-Wei Sun, Mar 21 2013
a(n) = (-1)^n*Sum_{k=0..n}C(2*k,k)*C(2(n-k),n-k)*C(k,n-k)*(-4)^k. I have proved this new formula via the Zeilberger algorithm. - Zhi-Wei Sun, Nov 19 2014

A362676 a(n) = Sum_{k = 0..n} 4^(n-k)*binomial(n,k)*binomial(n-1,k)*binomial(2*k,k).

Original entry on oeis.org

1, 4, 32, 328, 3840, 48504, 641984, 8765712, 122370048, 1736921560, 24975268032, 362872728816, 5317470233088, 78479369810352, 1165299414952320, 17393306836535328, 260791399517110272, 3925811865435871896, 59305018671515758784
Offset: 0

Views

Author

Peter Bala, Jul 03 2023

Keywords

Comments

The sequence of Franel numbers A000172 satisfies the identity A000172(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(n+2*k,2*k)*binomial(2*k,k). The present sequence comes from the following modification of the right-hand side of the identity: a(n) = Sum_{k = 0..n} (-4)^(n-k)*binomial(n,k)*binomial(-n+k,k)* binomial(2*k,k), multipled by a factor (-1)^n to give positive terms.
The Franel numbers satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r. We conjecture that the present sequence satisfies the same supercongruences.
From Peter Bala, Jul 07 2023 (Start):
Compare with the Domb numbers A002895, which are defined by A002895(n) = Sum_{k = 0..n} binomial(n,k)^2 * binomial(2*n-2*k,n-k) * binomial(2*k,k).
The supercongruences A002895(n*p^r) == A002895(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and r (see Osburn and Sahu).
We conjecture that the present sequence satisfies the same supercongruences. (End)

Crossrefs

Programs

  • Maple
    seq(add(4^(n-k)*binomial(n,k)*binomial(n-1,k)*binomial(2*k,k), k = 0..n), n = 0..20);
    # alternative faster program for large n
    seq(simplify(4^n*hypergeom([-n, 1 - n, 1/2], [1, 1], 1)), n = 0..20);
    # alternative (Peter Bala Jul 07 2023)
    seq(add(binomial(n+k-1,k) * binomial(2*n-2*k,n-k) * binomial(2*k,k), k = 0..n), n = 0..20);
  • Mathematica
    Table[4^n * HypergeometricPFQ[{-n, 1 - n, 1/2}, {1, 1}, 1], {n, 0, 20}] (* Vaclav Kotesovec, Jul 04 2023 *)
  • Python
    from sympy import hyper, hyperexpand, S
    def A362676(n): return int(hyperexpand(hyper((-n, 1-n, S.Half), [1,1], 1))*(1<<(n<<1))) # Chai Wah Wu, Jul 10 2023

Formula

a(n) = 4^n * hypergeom ([-n, 1 - n, 1/2], [1, 1], 1).
From Vaclav Kotesovec, Jul 04 2023: (Start)
Recurrence: (n-1)*n^2*(3*n^2 - 9*n + 7)*a(n) = 4*(n-1)*(15*n^4 - 60*n^3 + 80*n^2 - 40*n + 8)*a(n-1) - 4*(n-2)*(4*n - 7)*(4*n - 5)*(3*n^2 - 3*n + 1)*a(n-2).
a(n) ~ 2^(4*n - 1/2) / (Pi*n). (End)
a(n) = Sum_{k = 0..n} (-1)^k * binomial(-n,k) * binomial(2*n-2*k,n-k) * binomial(2*k,k). Cf. A081085. Peter Bala, Jul 07 2023
a(n) = binomial(2*n,n)*hypergeom([-n, n, 1/2], [1, 1/2 - n], 1). - Peter Bala, Jul 07 2023

A203576 Exponential (or binomial) half-convolution of A000984 (central binomial) with itself.

Original entry on oeis.org

1, 2, 14, 56, 446, 2152, 18248, 97120, 848254, 4796552, 42454664, 250140640, 2226532712, 13516860320, 120553738144, 748819997056, 6679690686334, 42254745008840, 376638926040392, 2418457241945056, 21530200591563496, 139992790135717792, 1244418656720926624, 8178446389043428736
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2012

Keywords

Comments

In general the exponential (also known as binomial) half-convolution of a sequence {b(n), n>=0} with itself is defined by
bhat(n) := Sum_{k=0..floor(n/2)} binomial(n,k)*b(k)*b(n-k), n>=0.
The e.g.f. of the sequence {bhat(n)} is Bhat(x) = ((B(x))^2 + B2(x^2))/2, with the e.g.f. B(x) of {b(n), n>=0} and the e.g.f. B2(x) := Sum_((b(n)^2/n!)*x^n/n!, n>=0) of the scaled squares. The proof runs along the same line as the one given for the ordinary half-convolution in a comment on A201204. In fact, bhat(n)/n! is the ordinary half-convolution of the sequence {b(n)/n!, n>=0} with itself.
Here b(n) = A000984(n) = binomial(2*n,n), n>=0, B(x) = exp(2*x)*BesselI(0,2*x) (see the Abramowitz-Stegun reference and link under A008277 for BesselI, p. 375, eq. 9.6.10) and B2(x) = hypergeometric([1/2,1/2],[1,1,1],16*x).

Examples

			With cbi = {1, 2, 6, 20, 70, 252, ...}
a(4) = 1*70 + 4*2*20 + 6*6^2 = 446,
a(5) = 1*252 + 5*2*70 + 10*6*20 = 2152.
		

Crossrefs

Cf. A000984, A081085 (exponential convolution).

Programs

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*cbi(k)*cbi(n-k) n>=0, with cbi(n)=A000984(n).
E.g.f.: (exp(4*x)*BesselI(0, 2*x)^2 + hypergeom([1/2,1/2], [1,1,1],(4*x)^2))/2. See comment above.
Recurrence: (n-1)^2 * n^3 * (3*n^5 - 40*n^4 + 200*n^3 - 476*n^2 + 544*n - 241)*a(n) = 4*(n-1)^3 * (9*n^7 - 126*n^6 + 699*n^5 - 1997*n^4 + 3165*n^3 - 2770*n^2 + 1239*n - 228)*a(n-1) + 32*(3*n^10 - 55*n^9 + 420*n^8 - 1786*n^7 + 4731*n^6 - 8232*n^5 + 9630*n^4 - 7580*n^3 + 3900*n^2 - 1194*n + 162)*a(n-2) - 256*(n-2)^3 * (9*n^7 - 126*n^6 + 699*n^5 - 1997*n^4 + 3165*n^3 - 2770*n^2 + 1239*n - 228)*a(n-3) + 2048*(n-3)^3 * (n-2)^2 * (3*n^5 - 25*n^4 + 70*n^3 - 86*n^2 + 47*n - 10)*a(n-4). - Vaclav Kotesovec, Feb 25 2014
a(n) ~ 8^n / (Pi*n) * (1 + (1+(-1)^n)/sqrt(2*Pi*n)). - Vaclav Kotesovec, Feb 25 2014

A328046 G.f.: 1/2 + 1/(1 + AGM(1, sqrt(1-16*x))).

Original entry on oeis.org

1, 1, 7, 68, 763, 9276, 118656, 1572024, 21368155, 296187164, 4169180104, 59420124472, 855590919392, 12425933510200, 181787367119112, 2676258927443328, 39615617922076635, 589234154312057436, 8801406013366190952, 131964659304934491576, 1985338775295068132520
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 03 2019

Keywords

Comments

AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/2 + 1/(1 + (Pi*Sqrt[1 - 16*x])/(2*EllipticK[1 - 1/(1 - 16*x)])), {x, 0, 25}], x]

Formula

a(n) ~ Pi * 16^n / (n * (log(n) + Pi)^2) * (1 - (2*gamma + 8*log(2)) / (log(n) + Pi) + (3*gamma^2 + 48*log(2)^2 + 24*gamma*log(2) - Pi^2/2) / (log(n) + Pi)^2), where gamma is the Euler-Mascheroni constant A001620.

A228156 Expansion of sqrt((1+4*x)/AGM(1+4*x,1-4*x)) where AGM denotes the arithmetic-geometric mean.

Original entry on oeis.org

1, 2, 0, 8, 2, 68, 32, 720, 464, 8480, 6656, 106368, 95912, 1390928, 1392512, 18734144, 20371650, 257955716, 300101760, 3613109008, 4448177412, 51302395528, 66289160512, 736588435360, 992578330048, 10674012880512, 14924667774976, 155890890782720, 225244659392784, 2291995151532576, 3410654921389824
Offset: 0

Views

Author

Joerg Arndt, Aug 14 2013

Keywords

Comments

Convolution square is A092266.

Crossrefs

Cf. A092266 (1+4*x)/AGM(1+4*x,1-4*x).
Cf. A081085 1/AGM(1,1-8*x), A053175 1/AGM(1,1-16*x), A090004 1/AGM(1,1-16*x)^(1/2), A089602 1/AGM(1,1-16*x)^(1/4).

Programs

  • Mathematica
    CoefficientList[Series[Sqrt[2*(1 + 4*x)*EllipticK[1 - (1 + 4*x)^2/(1 - 4*x)^2] / (Pi*(1 - 4*x))], {x, 0, 30}], x] (* Vaclav Kotesovec, Sep 27 2019 *)
  • PARI
    Vec( 1/agm(1,(1-4*x)/(1+4*x)+O(x^66))^(1/2) ) \\ Joerg Arndt, Aug 14 2013

Formula

a(n) ~ 2^(2*n - 1/2) / (n*sqrt(Pi*log(n))) * (1 - (gamma + 3*log(2)) / (2*log(n)) + (3*gamma^2/8 + 9*gamma*log(2)/4 + 27*log(2)^2/8 - 1/16*Pi^2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019

A291276 Primes p such that p does not divide any term of the Apery-like sequence A002893.

Original entry on oeis.org

2, 7, 13, 37, 61, 73, 109, 127, 157, 163, 193, 211, 223, 229, 271, 283, 307, 313, 331, 337, 349, 367, 379, 409, 421, 433, 463, 487, 499, 523, 577, 607, 613, 619, 631, 661, 673, 691, 727, 733, 751, 757, 769, 787, 823, 829, 853, 883, 907, 919, 1021, 1039
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291278 Primes p such that p does not divide any term of the Apery-like sequence A006077.

Original entry on oeis.org

2, 5, 13, 17, 29, 37, 41, 61, 73, 97, 101, 113, 137, 149, 157, 173, 181, 197, 229, 241, 257, 277, 313, 317, 349, 353, 389, 409, 421, 433, 449, 457, 461, 509, 541, 569, 577, 593, 613, 641, 653, 661, 673, 709, 757, 761, 769, 797, 809, 829, 853, 857
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291279 Primes p such that p does not divide any term of the Apery-like sequence A093388.

Original entry on oeis.org

5, 11, 29, 31, 59, 79, 107, 131, 149, 151, 173, 179, 193, 197, 199, 241, 251, 271, 317, 409, 433, 439, 443, 457, 461, 509, 557, 587, 601, 607, 659, 677, 701, 727, 751, 769, 773, 797, 821, 823, 827, 919, 971, 1009, 1013, 1019, 1033, 1039, 1061, 1063, 1087
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Previous Showing 41-50 of 56 results. Next