A082141
A transform of C(n,7).
Original entry on oeis.org
1, 8, 72, 480, 2640, 12672, 54912, 219648, 823680, 2928640, 9957376, 32587776, 103194624, 317521920, 952565760, 2794192896, 8033304576, 22682271744, 63006310400, 172438323200, 465583472640, 1241555927040, 3273192898560
Offset: 0
a(0) = (2^(-1) + 0^0/2)*C(7,0) = 2*(1/2) = 1 (using 0^0=1).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (16,-112,448,-1120,1792,-1792,1024,-256).
-
[(2^(n-1) + 0^n/2)*Binomial(n+7,n): n in [0..30]]; // G. C. Greubel, Feb 05 2018
-
[seq (ceil(binomial(n+7,7)*2^(n-1)),n=0..22)]; # Zerinvary Lajos, Nov 01 2006
-
Drop[With[{nmax = 50}, CoefficientList[Series[x^7*Exp[x]*Cosh[x]/7!, {x, 0, nmax}], x]*Range[0, nmax]!], 5] (* or *) Join[{1}, Table[2^(n-1)* Binomial[n+7,n], {n,1,30}]] (* G. C. Greubel, Feb 05 2018 *)
-
my(x='x+O('x^30)); Vec(serlaplace(x^7*exp(x)*cosh(x)/7!)) \\ G. C. Greubel, Feb 05 2018
A119468
Triangle read by rows: T(n,k) = Sum_{j=0..n-k} binomial(n,2j)*binomial(n-2j,k).
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 4, 6, 3, 1, 8, 16, 12, 4, 1, 16, 40, 40, 20, 5, 1, 32, 96, 120, 80, 30, 6, 1, 64, 224, 336, 280, 140, 42, 7, 1, 128, 512, 896, 896, 560, 224, 56, 8, 1, 256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1, 512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1
Offset: 0
Triangle begins
1;
1, 1;
2, 2, 1;
4, 6, 3, 1;
8, 16, 12, 4, 1;
16, 40, 40, 20, 5, 1;
32, 96, 120, 80, 30, 6, 1;
64, 224, 336, 280, 140, 42, 7, 1;
128, 512, 896, 896, 560, 224, 56, 8, 1;
256, 1152, 2304, 2688, 2016, 1008, 336, 72, 9, 1;
512, 2560, 5760, 7680, 6720, 4032, 1680, 480, 90, 10, 1;
A082137 read as triangle with rows reversed.
-
A119468_row := proc(n) local s,t,k;
s := series(exp(z*x)/(1-tanh(x)),x,n+2);
t := factorial(n)*coeff(s,x,n); seq(coeff(t,z,k), k=(0..n)) end:
for n from 0 to 7 do A119468_row(n) od; # Peter Luschny, Aug 01 2012
# Alternatively:
T := (n, k) -> 2^(n-k-1+0^(n-k))*binomial(n,k):
for n from 0 to 9 do seq(T(n,k), k=0..n) od; # Peter Luschny, Nov 10 2017
-
A[k_] := Table[If[m < n, 1, -1], {m, k}, {n, k}]; a = Join[{{1}}, Table[(-1)^n*CoefficientList[CharacteristicPolynomial[A[n], x], x], {n, 1, 10}]]; Flatten[a] (* Roger L. Bagula and Gary W. Adamson, Jan 25 2009 *)
Table[Sum[Binomial[n,2j]Binomial[n-2j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 14 2022 *)
-
R = PolynomialRing(QQ, 'x')
def p(n,x) :
return 1 if n==0 else add((-1)^n*binomial(n,k)*(x^(n-k)-1) for k in range(n))
def A119468_row(n):
x = R.gen()
return [abs(cf) for cf in list((p(n,x-1)-p(n,x+1))/2+x^n)]
for n in (0..8) : print(A119468_row(n)) # Peter Luschny, Jul 22 2012
A198793
Triangle T(n,k), read by rows, given by (1,0,0,1,0,0,0,0,0,0,0,...) DELTA (0,1,1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 4, 0, 1, 4, 12, 16, 8, 0, 1, 5, 20, 40, 40, 16, 0, 1, 6, 30, 80, 120, 96, 32, 0, 1, 7, 42, 140, 280, 336, 224, 64, 0, 1, 8, 56, 224, 560, 896, 896, 512, 128, 0, 1, 9, 72, 336, 1008, 2016, 2688, 2304, 1152, 256, 0
Offset: 0
Triangle begins :
1
1, 0
1, 1, 0
1, 2, 2, 0
1, 3, 6, 4, 0
1, 4, 12, 16, 8, 0,
1, 5, 20, 40, 40, 16, 0
Comments