cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A173078 a(n) = (5*2^n - 2*(-1)^n - 9)/3.

Original entry on oeis.org

1, 3, 11, 23, 51, 103, 211, 423, 851, 1703, 3411, 6823, 13651, 27303, 54611, 109223, 218451, 436903, 873811, 1747623, 3495251, 6990503, 13981011, 27962023, 55924051, 111848103, 223696211, 447392423, 894784851, 1789569703, 3579139411
Offset: 1

Views

Author

Paul Curtz, Feb 09 2010

Keywords

Comments

The sequence and higher-order differences in subsequent rows are
1, 3, 11, 23, 51, 103, 211, 423, 851, 1703, 3411, 6823, 13651
2, 8, 12, 28, 52, 108, 212, 428, 852, 1708, 3412, 6828, 13652
6, 4, 16, 24, 56, 104, 216, 424, 856, 1704, 3416, 6824, 13656
-2, 12, 8, 32, 48, 112, 208, 432, 848, 1712, 3408, 6832, 13648
14, -4, 24, 16, 64, 96, 224, 416, 864, 1696, 3424, 6816, 13664
-18, 28, -8, 48, 32, 128, 192, 448, 832, 1728, 3392, 6848, 1363
46, -36, 56, -16, 96, 64, 256, 384, 896, 1664, 3456, 6784, 1369
The main diagonal 1,8,16,... is essentially A000079.
A subdiagonal is 2, 4, 8, 16, ... A155559.
Other diagonals are 3, 12, 24, 48, ... = 3*A151821, 6, 12, 24, ... = A082505 and -2, -4, -8, -16, ..., a negated variant of A171449.

Programs

  • GAP
    List([1..40], n-> (5*2^n - 2*(-1)^n - 9)/3); # G. C. Greubel, Dec 01 2019
  • Magma
    [5*2^n/3-2*(-1)^n/3-3: n in [1..40]]; // Vincenzo Librandi, Aug 05 2011
    
  • Maple
    seq( (5*2^n -2*(-1)^n -9)/3, n=1..40); # G. C. Greubel, Dec 01 2019
  • Mathematica
    LinearRecurrence[{2,1,-2},{1,3,11},40] (* Harvey P. Dale, Oct 01 2018 *)
  • PARI
    vector(40, n, (5*2^n - 2*(-1)^n - 9)/3) \\ G. C. Greubel, Dec 01 2019
    
  • Sage
    [(5*2^n - 2*(-1)^n - 9)/3 for n in (1..40)] # G. C. Greubel, Dec 01 2019
    

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n+1) - 2*a(n) = A010686(n-1).
a(n) = A084214(n+1) - 3.
G.f.: x*(1 + x + 4*x^2) / ( (1-x)*(1-2*x)*(1+x) ).
a(2n+3) - a(2n+1) = 10*A000302(n).
E.g.f.: (-2*exp(-x) + 6 - 9*exp(x) + 5*exp(2*x))/3. - G. C. Greubel, Dec 01 2019

A176414 Expansion of (7+8*x)/(1+2*x).

Original entry on oeis.org

7, -6, 12, -24, 48, -96, 192, -384, 768, -1536, 3072, -6144, 12288, -24576, 49152, -98304, 196608, -393216, 786432, -1572864, 3145728, -6291456, 12582912, -25165824, 50331648, -100663296, 201326592, -402653184, 805306368
Offset: 0

Views

Author

Klaus Brockhaus, Apr 17 2010

Keywords

Comments

Inverse binomial transform of A176415.

Crossrefs

Cf. A176415, A110164 (essentially the same), A122803.

Programs

  • Mathematica
    Join[{7},NestList[-2#&,-6,40]] (* Harvey P. Dale, Jun 20 2020 *)
  • PARI
    {for(n=0, 29, print1(polcoeff((7+8*x)/(1+2*x)+x*O(x^n), n), ", "))}
    
  • PARI
    A176414(n)=3*(-2)^n+!n*4 \\ M. F. Hasler, Apr 19 2015

Formula

a(n) = A110164(n+2) for n > 0.
a(n) = 3*(-2)^n = 3*A122803(n+1) for n > 0; a(0) = 7.
a(n) = -2*a(n-1) for n > 1; a(0) = 7, a(1) = -6.
a(n) = (-1)^n*A132477(n) = (-1)^n*A122391(n+3), n>1.
a(n) = (-1)^n*A111286(n+2) = (-1)^n*A098011(n+4) = (-1)^n*A091629(n) = (-1)^n*A087009(n+3) = (-1)^n*A082505(n+1) = (-1)^n*A042950(n+1) = (-1)^n*A007283(n) = (-1)^n*A003945(n+1), n>0. - R. J. Mathar, Dec 10 2010
E.g.f.: 4 + 3*exp(-2*x). - Alejandro J. Becerra Jr., Feb 15 2021

Extensions

Edited by M. F. Hasler, Apr 19 2015
Previous Showing 11-12 of 12 results.