A088854
a(n) = (2^(n-1))*(Integral_{x=0..1} (1+x^2)^n dx)/(Integral_{x=0..1} (1-x^2)^n dx).
Original entry on oeis.org
2, 7, 24, 83, 292, 1046, 3808, 14051, 52412, 197202, 747120, 2846318, 10892936, 41844172, 161247104, 623034403, 2412871916, 9363311482, 36399254864, 141721774138, 552572485496, 2157194452852, 8431104269504, 32986010380558, 129177323979992, 506313914434036, 1986097541692128
Offset: 1
Al Hakanson (hawkuu(AT)excite.com), Nov 24 2003
-
A088854 := n -> 2^(n-1)*JacobiP(n, 1/2, -1 - n, 3):
seq(simplify(A088854(n)), n = 1..26); # Peter Luschny, Jan 22 2025
-
f[n_] := 2^(n - 1)Integrate[(1 + x^2)^n, {x, 0, 1}] / Integrate[(1 - x^2)^n, {x, 0, 1}]; Table[ f[n], {n, 1, 24}] (* Robert G. Wilson v, Feb 27 2004 *)
Table[2^(n-1)+Sum[2^(n-k)*Binomial[2*k-1,k], {k,1,n}],{n,1,20}] (* Vaclav Kotesovec, Oct 28 2012 *)
-
x='x+O('x^66); Vec(-1/2+1/(2*(1-2*x)*sqrt(1-4*x))) \\ Joerg Arndt, May 10 2013
A372239
Expansion of (1 + 2*x) / ((1 - 2*x)*sqrt(1 - 4*x)).
Original entry on oeis.org
1, 6, 22, 76, 262, 916, 3260, 11800, 43334, 161028, 604052, 2283048, 8681116, 33171144, 127260088, 489870896, 1891057222, 7317881444, 28378110628, 110251755656, 429040567732, 1672032067544, 6524678847688, 25490986350416, 99696437839132, 390298689482216
Offset: 0
-
a := n -> binomial(2*n,n) + 4*add(2^(n-k-1)*binomial(2*k,k), k = 0 .. n-1):
seq(a(n), n = 0 .. 25);
# Second program:
a:= proc(n) option remember; `if`(n=0,1,2*a(n-1)+2*binomial(2*n-2, n-1)*(3*n-1)/n) end: seq(a(n), n = 0 .. 25);
# Recurrence:
a := proc(n) option remember; if n < 2 then return [1, 6][n + 1] fi;
((-18*(n - 2)^2 - 42*n + 66)*a(n - 1) + 4*(3*n - 1)*(2*n - 3)*a(n - 2)) / (n*(4 - 3*n)) end: seq(a(n), n = 0..25); # Peter Luschny, Apr 23 2024
A372420
Expansion of (1 + x) / ((1 - 2*x)*sqrt(1 - 4*x)).
Original entry on oeis.org
1, 5, 18, 62, 214, 750, 2676, 9708, 35718, 132926, 499228, 1888644, 7186876, 27478508, 105474216, 406182552, 1568563014, 6071812638, 23552366796, 91525132692, 356242058004, 1388588519268, 5419533876696, 21176597444712, 82834229300124, 324326668721100
Offset: 0
-
a := n -> -2^(n-1)*3*I + binomial(2*n, n)*(1-3/2*hypergeom([1, n+1/2], [n+1], 2)):
seq(simplify(a(n)), n = 0 .. 25);
-
my(x='x+O('x^40)); Vec((1 + x) / ((1 - 2*x)*sqrt(1 - 4*x))) \\ Michel Marcus, Apr 30 2024
A096466
Triangle T(n,k), read by rows, formed by setting all entries in the zeroth column ((n,0) entries) and the main diagonal ((n,n) entries) to powers of 2 with all other entries formed by the recursion T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 2, 2, 4, 6, 4, 8, 14, 18, 8, 16, 30, 48, 56, 16, 32, 62, 110, 166, 182, 32, 64, 126, 236, 402, 584, 616, 64, 128, 254, 490, 892, 1476, 2092, 2156, 128, 256, 510, 1000, 1892, 3368, 5460, 7616, 7744, 256, 512, 1022, 2022, 3914, 7282, 12742, 20358, 28102, 28358, 512
Offset: 0
From _Petros Hadjicostas_, Aug 06 2020: (Start)
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
2, 2;
4, 6, 4;
8, 14, 18, 8;
16, 30, 48, 56, 16;
32, 62, 110, 166, 182, 32;
64, 126, 236, 402, 584, 616, 64;
... (End)
-
T(n,k) = if ((k==0) || (n==k), 2^n, if ((n<0) || (k<0), 0, if (n>k, T(n-1,k) + T(n,k-1), 0)));
for(n=0, 10, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Aug 07 2020
A372611
Expansion of (1 + 3*x) / ((1 - 2*x)*sqrt(1 - 4*x)).
Original entry on oeis.org
1, 7, 26, 90, 310, 1082, 3844, 13892, 50950, 189130, 708876, 2677452, 10175356, 38863780, 149045960, 573559240, 2213551430, 8563950250, 33203854460, 128978378620, 501839077460, 1955475615820, 7629823818680, 29805375256120, 116558646378140, 456270710243332
Offset: 0
-
a := n -> -2^(n-1)*5*I + binomial(2*n, n)*(1-5/2*hypergeom([1, n+1/2], [n+1], 2)): seq(simplify(a(n)), n = 0 .. 25);
-
my(x='x+O('x^30)); Vec((1 + 3*x) / ((1 - 2*x)*sqrt(1 - 4*x))) \\ Michel Marcus, May 07 2024
Comments