A082706
Numbers k such that (31*10^(k-1) - 13)/9 is a plateau prime.
Original entry on oeis.org
7, 13, 493, 5569, 24757
Offset: 1
k=13 -> (31*10^(13-1) - 13)/9 = 3444444444443.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A082707
Numbers k such that (32*10^(k-1) - 23)/9 is a plateau prime.
Original entry on oeis.org
3, 9, 141, 231, 427, 463, 727, 1975, 7231, 45861, 47305
Offset: 1
k=9 -> (32*10^(9-1) - 23)/9 = 355555553.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A082708
Numbers k such that (34*10^(k-1) - 43)/9 is a plateau prime.
Original entry on oeis.org
3, 15, 55, 69, 85, 87, 157, 2767, 3381, 3877, 5209, 10747, 15769, 31317, 40959, 45805, 46567, 51009, 80163
Offset: 1
k=15 -> (34*10^(15-1) - 43)/9 = 377777777777773.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Updates from De Geest site by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A082709
Numbers k such that (35*10^(k-1) - 53)/9 is a plateau prime.
Original entry on oeis.org
3, 13, 31, 61, 117, 291, 633, 1065, 1495, 5433, 7363
Offset: 1
k=13 -> (35*10^(13-1) - 53)/9 = 3888888888883.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
A082711
Numbers k such that (65*10^(k-1) + 43)/9 is a depression prime.
Original entry on oeis.org
3, 5, 9, 29, 65, 725, 1787, 7277, 19463, 24215, 51779, 131393
Offset: 1
k=9 -> (65*10^(9-1) + 43)/9 = 722222227.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Update from De Geest site by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A082712
Numbers k such that (67*10^(k-1) + 23)/9 is a depression prime.
Original entry on oeis.org
11, 31, 121, 485, 1487, 1579, 13673, 13811, 15095, 72773, 94212
Offset: 1
k=11 -> (67*10^(11-1) + 23)/9 = 74444444447.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
A082713
Numbers k such that (68*10^(k-1) + 13)/9 is a depression prime.
Original entry on oeis.org
3, 5, 11, 21, 23, 59, 75, 83, 209, 351, 423, 3813, 3983, 20925, 23787, 38853, 56043, 68505, 74435
Offset: 1
k=21 -> (68*10^(21-1) + 13)/9 = 755555555555555555557.
- C. Caldwell and H. Dubner, The near repdigit primes A(n-k-1)B(1)A(k), especially 9(n-k-1)8(1)9(k), Journal of Recreational Mathematics, Volume 28, No. 1, 1996-97, pp. 1-9.
Updates from De Geest site by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A082714
Numbers n such that 2*(10^n-1)/3+(10^(n-1)+1) or (69*10^(n-1)+3)/9 is a plateau or depression prime.
Original entry on oeis.org
5, 7, 55, 97, 455, 575, 3385, 11441, 12625, 19447, 35461, 81215, 95327
Offset: 1
7 is a term because 2*(10^7-1)/3+(10^6+1) = 7666667.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
35461 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A082715
Numbers k such that (71*10^(k-1) - 17)/9 is a plateau prime.
Original entry on oeis.org
3, 5, 87, 113, 171, 567, 1689, 8903, 115811
Offset: 1
k=5 -> (71*10^(5-1) - 17)/9 = 78887.
- C. Caldwell and H. Dubner, The near repdigit primes A(n-k-1)B(1)A(k), especially 9(n-k-1)8(1)9(k), Journal of Recreational Mathematics, Volume 28, No. 1, 1996-97, pp. 1-9.
A082716
Numbers k such that (72*10^(k-1) - 27)/9 is a plateau prime.
Original entry on oeis.org
3, 5, 29, 157, 323, 353, 1213, 1285, 7985, 15193, 84773, 119931, 148861
Offset: 1
k=5 -> (72*10^(5-1) - 27)/9 = 79997.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Comments