cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A210945 Triangle read by rows: T(n,k) = number of parts in the k-th column of the mirror of the last shell of the partitions of n.

Original entry on oeis.org

1, 2, 3, 5, 1, 7, 1, 11, 3, 1, 15, 3, 1, 22, 6, 3, 1, 30, 7, 4, 1, 42, 11, 7, 3, 1, 56, 13, 9, 4, 1, 77, 20, 15, 8, 3, 1, 101, 23, 18, 10, 4, 1, 135, 33, 27, 17, 8, 3, 1, 176, 40, 34, 22, 11, 4, 1, 231, 54, 47, 33, 18, 8, 3, 1, 297, 65, 58, 42, 24, 11, 4, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 21 2012

Keywords

Comments

For another version see A207379.

Examples

			For n = 7 the illustration shows two arrangements of the last shell of the partitions of 7:
.
.       (7)        (7)
.     (4+3)        (3+4)
.     (5+2)        (2+5)
.   (3+2+2)        (2+2+3)
.       (1)        (1)
.       (1)        (1)
.       (1)        (1)
.       (1)        (1)
.       (1)        (1)
.       (1)        (1)
.       (1)        (1)
.       (1)        (1)
.       (1)        (1)
.       (1)        (1)
.       (1)        (1)
.                 --------
.                  15,3,1
.
We can see that in the right hand picture (the mirror) the number of part for columns 1..3 are 15, 3, 1 therefore row 7 lists 15, 3, 1.
Written as a triangle begins:
1;
2;
3;
5,    1;
7,    1;
11,   3,  1;
15,   3,  1;
22,   6,  3,  1;
30,   7,  4,  1;
42,  11,  7,  3,  1;
56,  13,  9,  4,  1;
77,  20, 15,  8,  3,  1;
101, 23, 18, 10,  4,  1;
135, 33, 27, 17,  8,  3,  1;
176, 40, 34, 22, 11,  4,  1;
231, 54, 47, 33, 18,  8,  3,  1;
297, 65, 58, 42, 24, 11,  4,  1;
		

Crossrefs

Column 1 is A000041,n >= 1. Column 2 is A083751. Column 3 is A119907. Row sums give A138137.

Extensions

More terms from Alois P. Heinz, May 07 2012

A119907 Number of partitions of n such that if k is the largest part, then k-2 occurs as a part.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 4, 7, 9, 15, 18, 27, 34, 47, 58, 79, 96, 127, 155, 199, 242, 308, 371, 465, 561, 694, 833, 1024, 1223, 1491, 1778, 2150, 2556, 3076, 3642, 4359, 5151, 6133, 7225, 8570, 10066, 11892, 13937, 16401, 19173, 22495, 26228, 30676, 35692, 41620
Offset: 0

Views

Author

Vladeta Jovovic, Aug 02 2006

Keywords

Comments

It appears that positive terms give column 3 of triangle A210945. - Omar E. Pol, May 18 2012

Crossrefs

Cf. A083751.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))
        end:
    a:= n-> add(b(n-(2*k-2), k), k=3..1+n/2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 18 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i>n, 0, b[n-i, i]]]; a[n_] := Sum[b[n-(2*k-2), k], {k, 3, 1+n/2}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)

Formula

G.f. for number of partitions of n such that if k is the largest part, then k-m occurs as a part is Sum(x^(2*i-m)/Product(1-x^j, j=1..i), i=m+1..infinity).
It appears that a(n) = (A000041(n+2) - A000041(n+1)) - (A002620(n+2) - A002620(n+1)). - Gionata Neri, Apr 12 2015

Extensions

More terms from Joshua Zucker, Aug 14 2006

A268190 Triangle read by rows: T(n,k) (n, k>=1) is the number of partitions of n such that the difference between the two largest distinct parts is k; T(n,0) is the number of partitions of n in which all parts are equal.

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 1, 2, 3, 1, 1, 4, 3, 2, 1, 1, 2, 6, 3, 2, 1, 1, 4, 7, 5, 2, 2, 1, 1, 3, 11, 5, 5, 2, 2, 1, 1, 4, 13, 10, 5, 4, 2, 2, 1, 1, 2, 20, 11, 8, 5, 4, 2, 2, 1, 1, 6, 23, 16, 10, 8, 4, 4, 2, 2, 1, 1, 2, 33, 20, 15, 9, 8, 4, 4
Offset: 1

Views

Author

Emeric Deutsch, Feb 10 2016

Keywords

Comments

Sum of entries in row n is A000041(n) (the partition numbers).
T(n,0) = A000005(n) = number of divisors of n.
T(n,1) = A083751(n+1) for n>=3.
Sum(k*T(n,k),k>=1) = A268191(n).
T(2n,n) = A002865(n) for n>=2. - Alois P. Heinz, Feb 11 2016

Examples

			T(5,0)=2 because we have [5] and [1,1,1,1,1]; T(5,1)=3 because we have [3,2], [2,2,1], and [2,1,1,1]; T(5,2)=1 because we have [3,1,1]; T(5,3)=1 because we have [4,1].
Triangle starts:
1;
2;
2,1;
3,1,1;
2,3,1,1;
4,3,2,1,1;
		

Crossrefs

Programs

  • Maple
    G := add(x^k/(1-x^k), k = 1 .. 80)+ add(add(t^(i-j)*x^(i+j)/((1-x^i)*mul(1-x^k,k = 1 .. j)), j = 1 .. i-1), i = 2 .. 80): Gser := simplify(series(G, x = 0, 35)): for n from 0 to 30 do P[n] := sort(coeff(Gser, x, n)) end do: 1; for n from 2 to 25 do seq(coeff(P[n], t, j), j = 0 .. n-2) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, l, i) option remember; `if`(irem(n, i)=0, x^
          `if`(l=0, 0, i-l), 0) +`if`(i>n, 0, add(b(n-i*j,
          `if`(j=0, l, i), i+1), j=0..(n-1)/i))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=1..30);  # Alois P. Heinz, Feb 11 2016
  • Mathematica
    b[n_, l_, i_] := b[n, l, i] = If[Mod[n, i] == 0, x^If[l == 0, 0, i-l], 0] + If[i>n, 0, Sum[b[n-i*j, If[j == 0, l, i], i+1], {j, 0, (n-1)/i}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 0, 1]]; Table[T[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Dec 21 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Sum_{k>0} (x^k/(1-x^k)) + Sum_{k>1} (Sum_{j=1..i-1} t^{i-j}*x^{i+j}/((1 - x^i)*Product_{k=1..j} (1 - x^k))).

A320221 Irregular triangle where T(n,k) is the number of unlabeled series-reduced rooted trees with n leaves in which every leaf is at height k, (n>=1, min(1,n-1) <= k <= log_2(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 6, 1, 1, 7, 1, 1, 11, 4, 1, 13, 6, 1, 20, 16, 1, 23, 23, 1, 33, 46, 1, 40, 70, 1, 54, 127, 1, 1, 65, 189, 1, 1, 87, 320, 5, 1, 104, 476, 10, 1, 136, 771, 32, 1, 164, 1145, 63, 1, 209, 1795, 154, 1, 252, 2657, 304, 1, 319, 4091, 656
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Examples

			Triangle begins:
  1
  1
  1
  1  1
  1  1
  1  3
  1  3
  1  6  1
  1  7  1
  1 11  4
  1 13  6
  1 20 16
  1 23 23
  1 33 46
  1 40 70
The T(11,3) = 6 rooted trees:
   (((oo)(oo))((oo)(ooooo)))
   (((oo)(oo))((ooo)(oooo)))
   (((oo)(ooo))((oo)(oooo)))
   (((oo)(ooo))((ooo)(ooo)))
  (((oo)(oo))((oo)(oo)(ooo)))
  (((oo)(ooo))((oo)(oo)(oo)))
		

Crossrefs

Row sums are A120803. Second column is A083751. A regular version is A320179.

Programs

  • Mathematica
    qurt[n_]:=If[n==1,{{}},Join@@Table[Union[Sort/@Tuples[qurt/@ptn]],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}]];
    DeleteCases[Table[Length[Select[qurt[n],SameQ[##,k]&@@Length/@Position[#,{}]&]],{n,10},{k,0,n-1}],0,{2}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    T(n)={my(u=vector(n), v=vector(n), h=1); u[1]=1; while(u, v+=u*h; h*=x; u=EulerT(u)-u); v[1]=x; [Vecrev(p/x) | p<-v]}
    { my(A=T(15)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 09 2020

Extensions

Terms a(36) and beyond from Andrew Howroyd, Dec 09 2020
Name clarified by Andrew Howroyd, Dec 09 2020

A334652 Number of integer partitions of n with at least two parts, each greater than 1 and with the same multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 2, 4, 5, 7, 6, 12, 9, 15, 17, 21, 20, 33, 28, 43, 44, 55, 55, 81, 77, 99, 108, 135, 136, 184, 180, 230, 246, 294, 316, 398, 403, 489, 532, 637, 668, 816, 852, 1019, 1107, 1275, 1370, 1637, 1727, 2016, 2185, 2518, 2701, 3152, 3370, 3884, 4200, 4774, 5154, 5953
Offset: 0

Views

Author

Olivier Gérard, May 07 2020

Keywords

Comments

All parts are greater than 1, there are at least two parts, and each part size has the same multiplicity.
This sequence was inspired by a post of Ali Sada, May 07 2020 on the seqfan mailing list.

Examples

			The a(4) = 1 partition is 2 + 2.
The a(7) = 2 partitions are 2 + 5 and 3 + 4. Each part has multiplicity 1.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@Select[IntegerPartitions[n], Min[#] > 1 && Length[#] > 1 && (Length[Union[Length /@ Split[Sort[#]]]] == 1) &], {n, 0, 20}]
  • PARI
    \\ here b(n) is A025147.
    b(n)={my(A=O(x*x^n)); polcoef(eta(x^2 + A) / eta(x + A) / (1 + x), n)}
    a(n)={if(n<=1, 0, sumdiv(n, d, b(d)) - 1)} \\ Andrew Howroyd, May 07 2020

Formula

a(n) = -1 + Sum_{d|n} A025147(d) for n > 1. - Andrew Howroyd, May 07 2020

A334653 Number of integer partitions of n with at least two parts, each greater than 1, at least two kinds of parts and all with the same multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 6, 8, 9, 13, 15, 18, 20, 29, 28, 39, 42, 53, 55, 75, 76, 97, 106, 131, 136, 178, 180, 226, 244, 292, 314, 391, 403, 487, 530, 631, 668, 810, 852, 1015, 1103, 1273, 1370, 1629, 1726, 2012, 2183, 2514, 2701, 3146, 3368, 3878, 4198
Offset: 0

Views

Author

Olivier Gérard, May 07 2020

Keywords

Comments

All parts are greater than 1, there is more than one part, and each part size has the same multiplicity.
This sequence was inspired by a post of Ali Sada, May 07 2020, on the seqfan mailing list.

Examples

			The a(10) = 5 partitions are 2 + 8, 3 + 7, 4 + 6, 2 + 3 + 5 and 2 + 2 + 3 + 3.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@Select[IntegerPartitions[n], Min[#] > 1 && Length[#] > 1 && Length[Union[#]] > 1 && (Length[Union[Length /@ Split[Sort[#]]]] == 1) &], {n, 0, 40}]
  • PARI
    \\ here b(n) is A025147.
    b(n)={my(A=O(x*x^n)); polcoef(eta(x^2 + A) / eta(x + A) / (1 + x), n)}
    a(n)={if(n<1, 0, 1 + sumdiv(n, d, b(d)-1))} \\ Andrew Howroyd, May 07 2020

Formula

a(n) = 1 + Sum_{d|n} (A025147(d) - 1) for n > 0. - Andrew Howroyd, May 07 2020

A320291 Number of singleton-free multiset partitions of integer partitions of n with no 1's.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 3, 3, 7, 8, 15, 19, 36, 46, 79, 110, 181, 254, 407, 580, 907, 1309, 2004, 2909, 4410, 6407, 9599, 13984, 20782, 30252, 44677, 64967, 95414, 138563, 202527, 293583, 427442, 618337, 897023, 1295020, 1872696, 2697777, 3889964, 5591917, 8041593, 11535890
Offset: 0

Views

Author

Gus Wiseman, Oct 09 2018

Keywords

Examples

			The a(4) = 1 through a(10) = 15 multiset partitions:
  ((22))  ((23))  ((24))   ((25))   ((26))      ((27))      ((28))
                  ((33))   ((34))   ((35))      ((36))      ((37))
                  ((222))  ((223))  ((44))      ((45))      ((46))
                                    ((224))     ((225))     ((55))
                                    ((233))     ((234))     ((226))
                                    ((2222))    ((333))     ((235))
                                    ((22)(22))  ((2223))    ((244))
                                                ((22)(23))  ((334))
                                                            ((2224))
                                                            ((2233))
                                                            ((22222))
                                                            ((22)(24))
                                                            ((22)(33))
                                                            ((23)(23))
                                                            ((22)(222))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[Join@@mps/@Select[IntegerPartitions[n],FreeQ[#,1]&],FreeQ[Length/@#,1]&]],{n,20}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(v=vector(n,i,i>1)); concat([1], EulerT(EulerT(v)-v))} \\ Andrew Howroyd, Oct 25 2018

Formula

Euler transform of A083751. - Andrew Howroyd, Oct 25 2018

Extensions

Terms a(21) and beyond from Andrew Howroyd, Oct 25 2018
Previous Showing 11-17 of 17 results.