cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A083946 Least integer coefficients of A(x), where 1<=a(n)<=6, such that A(x)^(1/6) consists entirely of integer coefficients.

Original entry on oeis.org

1, 6, 3, 2, 3, 6, 6, 6, 3, 4, 6, 6, 6, 6, 3, 4, 6, 6, 3, 6, 6, 2, 3, 6, 6, 6, 3, 4, 6, 6, 2, 6, 6, 6, 6, 6, 6, 6, 3, 4, 6, 6, 4, 6, 6, 2, 6, 6, 4, 6, 3, 2, 3, 6, 6, 6, 3, 4, 3, 6, 3, 6, 3, 4, 6, 6, 2, 6, 3, 6, 3, 6, 1, 6, 6, 4, 6, 6, 2, 6, 6, 2, 6, 6, 3, 6, 3, 4, 6, 6, 1, 6, 6, 6, 6, 6, 6, 6, 3, 2, 6, 6, 6, 6, 3
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

More generally, "least integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m>0. Is this sequence periodic?

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Block[{k = 1, s = Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/6), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Jul 26 2005

A083947 Integer coefficients of A(x), where 1<=a(n)<=7, such that A(x)^(1/7) consists entirely of integer coefficients.

Original entry on oeis.org

1, 7, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 5, 7, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 4, 7, 7, 7, 7, 7, 7, 2, 7, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 3, 7, 7, 7, 7, 7, 7, 5, 7, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7, 2, 7, 7, 7, 7, 7, 7, 5, 7, 7, 7, 7, 7, 7, 1, 7, 7, 7, 7, 7, 7
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

More generally the sequence, "integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m. Are these sequences periodic?

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Block[{k = 1, s = Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/7), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Jul 26 2005

A084067 Integer coefficients of A(x), where 1<=a(n)<=12, such that A(x)^(1/12) consists entirely of integer coefficients.

Original entry on oeis.org

1, 12, 6, 4, 9, 12, 4, 12, 12, 8, 6, 12, 6, 12, 12, 12, 12, 12, 8, 12, 9, 12, 12, 12, 12, 12, 6, 12, 6, 12, 10, 12, 6, 12, 12, 12, 2, 12, 6, 8, 6, 12, 12, 12, 12, 4, 12, 12, 8, 12, 12, 8, 3, 12, 4, 12, 12, 4, 12, 12, 9, 12, 6, 4, 6, 12, 4, 12, 12, 12, 12, 12, 2, 12, 6, 12, 3, 12, 6, 12, 3, 8
Offset: 0

Views

Author

Paul D. Hanna, May 10 2003

Keywords

Comments

More generally, the sequence: "integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m>0. Are these sequences ever periodic?

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Block[{k = 1, s = Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/12), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 81}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Jul 26 2005

A083945 Least integer coefficients of A(x), where 1<=a(n)<=5, such that A(x)^(1/5) consists entirely of integer coefficients.

Original entry on oeis.org

1, 5, 5, 5, 5, 1, 5, 5, 5, 5, 4, 5, 5, 5, 5, 3, 5, 5, 5, 5, 2, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 2, 5, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 5, 5, 5, 5, 3, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Paul D. Hanna, May 09 2003

Keywords

Comments

More generally, "least integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m>0. Is this sequence periodic?

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Block[{k = 1, s = Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/5), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 104}] (* Robert G. Wilson v *)

Extensions

More terms from Robert G. Wilson v, Jul 26 2005

A106216 Coefficients of g.f. A(x) where 0 <= a(n) <= 2 for all n>1, with initial terms {1,3}, such that A(x)^(1/3) consists entirely of integer coefficients.

Original entry on oeis.org

1, 3, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Comments

The self-convolution cube-root equals A106219. Positions of 1's is given by A106217. Positions of 2's is given by A106218. What is the frequency of occurrence of the 1's and 2's?

Examples

			A(x)^(1/3) = 1 + 1x - 1x^2 + 2x^3 - 4x^4 + 9x^5 - 21x^6 + 53x^6 -+...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+3*x);if(n==0,1,if(n==1,3, for(j=2,n, for(k=0,2,t=polcoeff((A+k*x^j+x*O(x^j))^(1/3),j); if(denominator(t)==1,A=A+k*x^j;break)));polcoeff(A,n)))}

Formula

A(z)=0 at z=-0.322846893915891638743032676733152456643928599...

A084066 Least integer coefficients of A(x), where 1<=a(n)<=11, such that A(x)^(1/11) consists entirely of integer coefficients.

Original entry on oeis.org

1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 7, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 4, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 9, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 5, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 5, 11, 11, 11, 11, 11
Offset: 0

Views

Author

Paul D. Hanna, May 10 2003

Keywords

Comments

More generally, the sequence: "integer coefficients of A(x), where 1<=a(n)<=m, such that A(x)^(1/m) consists entirely of integer coefficients", appears to have a unique solution for all m>0. Are these sequences ever periodic?

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Block[{k = 1, s = Sum[a[i]*x^i, {i, 0, n-1}]}, While[ Union[ IntegerQ /@ CoefficientList[ Series[(s+k*x^n)^(1/11), {x, 0, n}], x]] != {True}, k++ ]; k]; Table[ a[n], {n, 0, 71}] (* Robert G. Wilson v *)

Formula

a(k)=0 (mod 11) when k not= 0 (mod 11); a(0)=1, a(11)=1, a(22)=7, a(33)=4, a(44)=9, a(55)=5, a(66)=5, ...

Extensions

More terms from Robert G. Wilson v, Jul 26 2005

A132853 Number of sequences {c(i), i=0..n} that form the initial terms of a self-convolution cube of an integer sequence such that 0 < c(n) <= 3*c(n-1) for n>0 with c(0)=1.

Original entry on oeis.org

1, 1, 3, 18, 180, 4347, 245511, 33731424, 11850958449, 10823718435525, 26127739209077469, 169071160476526474689, 2962647736390311022542681, 141814999458311839862777779311, 18682218330844513414826192858258922
Offset: 0

Views

Author

Paul D. Hanna, Sep 19 2007, Oct 06 2007

Keywords

Comments

Equals the number of nodes at generation n in the 3-convoluted tree. The minimal path in the 3-convoluted tree is A083953 and the maximal path is A132835. The 3-convoluted tree is defined as follows: tree of all finite sequences {c(k), k=0..n} that form the initial terms of a self-convolution cube of some integer sequence such that 0 < c(n) <= 3*c(n-1) for n>0 with a(0)=1.

Examples

			a(n) counts the nodes in generation n of the following tree.
Generations 0..4 of the 3-convoluted tree are as follows;
The path from the root is shown, with child nodes enclosed in [].
GEN.0: [1];
GEN.1: 1->[3];
GEN.2: 1-3->[3,6,9];
GEN.3:
1-3-3->[1,4,7]
1-3-6->[1,4,7,10,13,16]
1-3-9->[1,4,7,10,13,16,19,22,25];
GEN.4:
1-3-3-1->[3]
1-3-3-4->[3,6,9,12]
1-3-3-7->[3,6,9,12,15,18,21]
1-3-6-1->[3]
1-3-6-4->[3,6,9,12]
1-3-6-7->[3,6,9,12,15,18,21]
1-3-6-10->[3,6,9,12,15,18,21,24,27,30]
1-3-6-13->[3,6,9,12,15,18,21,24,27,30,33,36,39]
1-3-6-16->[3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48]
1-3-9-1->[3]
1-3-9-4->[3,6,9,12]
1-3-9-7->[3,6,9,12,15,18,21]
1-3-9-10->[3,6,9,12,15,18,21,24,27,30]
1-3-9-13->[3,6,9,12,15,18,21,24,27,30,33,36,39]
1-3-9-16->[3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48]
1-3-9-19->[3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57]
1-3-9-22->[3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66 ]
1-3-9-25->[3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75].
Each path in the tree from the root node forms the initial terms of
a self-convolution cube of a sequence of integer terms.
		

Crossrefs

Extensions

Extended by Martin Fuller, Sep 24 2007.

A111603 Consider the array T(n, m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read from upper right to lower left.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 3, 4, 1, 1, 2, 1, 2, 5, 1, 1, 2, 3, 4, 5, 6, 1, 1, 1, 3, 3, 5, 3, 7, 1, 1, 2, 3, 4, 5, 2, 7, 8, 1, 1, 2, 3, 4, 1, 3, 7, 4, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 1, 3, 1, 5, 6, 7, 2, 3, 5, 11, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 1, 1, 3, 4, 5, 3, 1, 4, 9, 10
Offset: 1

Views

Author

Keywords

Examples

			Table begins
k= 0 1 2 3 4 5 6 7 8 9 10 11 12 13
n\
1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2| 1 2 1 2 2 2 1 2 2 2 1 2 1 2
3| 1 3 3 1 3 3 3 3 3 3 3 3 1 3
4| 1 4 2 4 3 4 4 4 1 4 4 4 3 4
5| 1 5 5 5 5 1 5 5 5 5 4 5 5 5
6| 1 6 3 2 3 6 6 6 3 4 6 6 6 6
7| 1 7 7 7 7 7 7 1 7 7 7 7 7 7
8| 1 8 4 8 2 8 4 8 7 8 8 8 4 8
9| 1 9 9 3 9 9 3 9 9 1 9 9 6 9
10| 1 10 5 10 10 2 5 10 10 10 3 10 5 10
11| 1 11 11 11 11 11 11 11 11 11 11 1 11 11
12| 1 12 6 4 9 12 4 12 12 8 6 12 6 12
13| 1 13 13 13 13 13 13 13 13 13 13 13 13 1
14| 1 14 7 14 7 14 14 2 7 14 14 14 14 14
15| 1 15 15 5 15 3 10 15 15 10 15 15 5 15
16| 1 16 8 16 4 16 8 16 10 16 8 16 12 16
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[ a[j], {j, 0, 32}]]; g[n_, m_] := f[n][[m]]; Flatten[ Table[ f[i, n - i], {n, 15}, {i, n - 1, 1, -1}]]

A111604 Consider the array T(n, m) where the n-th row is the sequence of integer coefficients of A(x), where 1<=a(n)<=n, such that A(x)^(1/n) consists entirely of integer coefficients and where m is the (m+1)-th coefficient. This is the antidiagonal read zig-zag.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 4, 3, 2, 1, 1, 2, 1, 2, 5, 1, 1, 6, 5, 4, 3, 2, 1, 1, 1, 3, 3, 5, 3, 7, 1, 1, 8, 7, 2, 5, 4, 3, 2, 1, 1, 2, 3, 4, 1, 3, 7, 4, 9, 1, 1, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 3, 1, 5, 6, 7, 2, 3, 5, 11, 1, 1, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 1, 3, 4, 5, 3, 1, 4, 9, 10, 11
Offset: 1

Views

Author

Keywords

Comments

T(n,n)=T(n,n+2)=A111627.

Examples

			Table begins
\k...0...1....2....3....4....5....6....7....8....9...10...11...12...13
n\
1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2| 1 2 1 2 2 2 1 2 2 2 1 2 1 2
3| 1 3 3 1 3 3 3 3 3 3 3 3 1 3
4| 1 4 2 4 3 4 4 4 1 4 4 4 3 4
5| 1 5 5 5 5 1 5 5 5 5 4 5 5 5
6| 1 6 3 2 3 6 6 6 3 4 6 6 6 6
7| 1 7 7 7 7 7 7 1 7 7 7 7 7 7
8| 1 8 4 8 2 8 4 8 7 8 8 8 4 8
9| 1 9 9 3 9 9 3 9 9 1 9 9 6 9
10| 1 10 5 10 10 2 5 10 10 10 3 10 5 10
11| 1 11 11 11 11 11 11 11 11 11 11 1 11 11
12| 1 12 6 4 9 12 4 12 12 8 6 12 6 12
13| 1 13 13 13 13 13 13 13 13 13 13 13 13 1
14| 1 14 7 14 7 14 14 2 7 14 14 14 14 14
15| 1 15 15 5 15 3 10 15 15 10 15 15 5 15
16| 1 16 8 16 4 16 8 16 10 16 8 16 12 16
		

Crossrefs

Programs

  • Mathematica
    f[n_] := f[n] = Block[{a}, a[0] = 1; a[l_] := a[l] = Block[{k = 1, s = Sum[ a[i]*x^i, {i, 0, l - 1}]}, While[ IntegerQ[ Last[ CoefficientList[ Series[(s + k*x^l)^(1/n), {x, 0, l}], x]]] != True, k++ ]; k]; Table[a[j], {j, 0, 32}]]; g[n_, m_] := f[n][[m]];

A196306 Coefficients of g.f. A(x) where -1 <= a(n) <= 1 for all n>1, with initial terms {1,3}, such that A(x)^(1/3) consists entirely of integer coefficients.

Original entry on oeis.org

1, 3, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 01 2011

Keywords

Comments

A(z) = 0 at z = -0.3218604126 5330206348 1666946119 2701743677 6909817084 3826086189 5315539535 3583969883 ...

Examples

			G.f.: A(x) = 1 + 3*x + x^3 - x^6 - x^9 - x^12 - x^18 + x^21 - x^24 - x^30 - x^33 + x^39 - x^42 - x^45 + x^48 + x^54 - x^60 - x^66 - x^69 + x^72 - x^75 + x^84 - x^87 - x^90 - x^93 - x^96 - x^102 + x^108 - x^114 - x^126 + x^132 - x^135 - x^138 + x^141 - x^144 - x^147 - x^153 - x^159 - x^162 + x^165 - x^168 - x^171 + x^174 - x^180 - x^183 + x^186 - x^189 - x^192 + x^195 +...
where
A(x)^(1/3) = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 22*x^6 + 55*x^7 - 142*x^8 + 375*x^9 - 1009*x^10 + 2753*x^11 - 7599*x^12 + 21178*x^13 - 59509*x^14 + 168401*x^15 - 479477*x^16 + 1372536*x^17 - 3947678*x^18 + 11402376*x^19 - 33059314*x^20 + 96177750*x^21 +...+ A196307(n)*x^n +...
		

Crossrefs

Cf. A196307 (cube-root), A196308 (trisection); variants: A106216, A083953.

Programs

  • PARI
    {a(n)=local(A=1+3*x); if(n==0, 1, if(n%3==0,for(j=1, n, for(k=-1, 1, t=polcoeff((A+k*x^j+x*O(x^j))^(1/3), j);
    if(denominator(t)==1, A=A+k*x^j; break)))); polcoeff(A+x*O(x^n), n))}
Previous Showing 11-20 of 22 results. Next