A097101 Numbers n that are the hypotenuse of exactly 7 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 7 ways.
325, 425, 650, 725, 845, 850, 925, 975, 1025, 1275, 1300, 1325, 1445, 1450, 1525, 1690, 1700, 1825, 1850, 1950, 2050, 2175, 2225, 2275, 2425, 2525, 2535, 2550, 2600, 2650, 2725, 2775, 2825, 2873, 2890, 2900, 2925, 2975
Offset: 1
Keywords
Examples
Example supplied by _R. J. Mathar_, Feb 26 2008: The smallest number that can be written as a sum of two nonzero squares in 7 different ways is 105625 = 325^2: 1296 + 104329 = 105625 = 325^2 6400 + 99225 = 105625 = 325^2 8281 + 97344 = 105625 = 325^2 15625 + 90000 = 105625 = 325^2 27225 + 78400 = 105625 = 325^2 38025 + 67600 = 105625 = 325^2 41616 + 64009 = 105625 = 325^2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).
Programs
-
Mathematica
r[a_]:={b,c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)
Formula
Equals {n: A025426(n^2)=7}.
Extensions
Definition and comments corrected by Zak Seidov, Feb 26 2008, May 12 2008
Comments