cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 30 results. Next

A097101 Numbers n that are the hypotenuse of exactly 7 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 7 ways.

Original entry on oeis.org

325, 425, 650, 725, 845, 850, 925, 975, 1025, 1275, 1300, 1325, 1445, 1450, 1525, 1690, 1700, 1825, 1850, 1950, 2050, 2175, 2225, 2275, 2425, 2525, 2535, 2550, 2600, 2650, 2725, 2775, 2825, 2873, 2890, 2900, 2925, 2975
Offset: 1

Views

Author

James R. Buddenhagen, Sep 15 2004

Keywords

Comments

Comment from R. J. Mathar, Feb 26 2008, edited by Zak Seidov May 12 2008: (Start)
There are nonsquares x which can be written as a sum of 2 nonzero squares in exactly 7 different ways and which are by definition not in this sequence.
203125 = (125*sqrt(13))^2 is the first example: 203125 = 625 + 202500 = 10404 + 192721 = 18225 + 184900= 22500 + 180625= 62500 + 140625= 69169 + 133956= 84100 + 119025.
The second and third examples are 265625 = (125*sqrt(17))^2 and 406250=(125*sqrt(26))^2. (End)
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Examples

			Example supplied by _R. J. Mathar_, Feb 26 2008:
The smallest number that can be written as a sum of two nonzero squares in 7 different ways is 105625 = 325^2:
1296 + 104329 = 105625 = 325^2
6400 + 99225 = 105625 = 325^2
8281 + 97344 = 105625 = 325^2
15625 + 90000 = 105625 = 325^2
27225 + 78400 = 105625 = 325^2
38025 + 67600 = 105625 = 325^2
41616 + 64009 = 105625 = 325^2.
		

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b,c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Formula

Equals {n: A025426(n^2)=7}.

Extensions

Definition and comments corrected by Zak Seidov, Feb 26 2008, May 12 2008

A097103 Numbers n that are the hypotenuse of exactly 22 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 22 ways.

Original entry on oeis.org

5525, 9425, 11050, 12025, 12325, 13325, 14365, 15725, 16575, 17225, 17425, 18785, 18850, 19825, 22100, 22525, 23725, 24050, 24505, 24650, 25925, 26650, 26825, 28275, 28730, 28925, 29725, 31025, 31265, 31450, 31525, 32825, 33150, 34450
Offset: 1

Views

Author

James R. Buddenhagen, Sep 15 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[a_]:={b,c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Extensions

More terms from Ray Chandler, Sep 16 2004
Definition corrected by Zak Seidov, Feb 26 2008

A097219 Numbers n that are the hypotenuse of exactly 6 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 6 ways.

Original entry on oeis.org

15625, 31250, 46875, 62500, 93750, 109375, 125000, 140625, 171875, 187500, 218750, 250000, 281250, 296875, 328125, 343750, 359375, 375000, 421875, 437500, 484375, 500000, 515625, 562500, 593750, 656250, 671875, 687500, 718750, 734375
Offset: 1

Views

Author

James R. Buddenhagen, Sep 17 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Extensions

More terms from Ray Chandler, Sep 18 2004

A097225 Numbers n that are the hypotenuse of exactly 10 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 10 ways.

Original entry on oeis.org

1625, 2125, 3250, 3625, 4250, 4625, 4875, 5125, 6375, 6500, 6625, 7250, 7625, 8500, 9125, 9250, 9750, 10250, 10875, 10985, 11125, 11375, 12125, 12625, 12750, 13000, 13250, 13625, 13875, 14125, 14500, 14625, 14875, 15250, 15375, 17000, 17125
Offset: 1

Views

Author

James R. Buddenhagen, Sep 17 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Programs

  • Mathematica
    r[n_] := Reduce[0 < x <= y && n^2 == x^2 + y^2, {x, y}, Integers]; Reap[For[n = 5, n <= 20000, n++, rn = r[n]; If[rn =!= False, If[Length[r[n]] == 10, Print[n]; Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Nov 15 2016 *)

A097238 Numbers j that are the hypotenuse of exactly 16 distinct integer-sided right triangles, i.e., j^2 can be written as a sum of two squares in 16 ways.

Original entry on oeis.org

40625, 53125, 81250, 90625, 106250, 115625, 121875, 128125, 159375, 162500, 165625, 181250, 190625, 212500, 228125, 231250, 243750, 256250, 271875, 278125, 284375, 303125, 315625, 318750, 325000, 331250, 340625, 346875, 353125, 362500
Offset: 1

Views

Author

James R. Buddenhagen, Sep 17 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Extensions

More terms from Ray Chandler, Sep 18 2004
Offset corrected by Michel Marcus, Aug 04 2017

A097239 Numbers n that are the hypotenuse of exactly 17 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 17 ways.

Original entry on oeis.org

21125, 36125, 42250, 54925, 63375, 72250, 84500, 105125, 108375, 109850, 122825, 126750, 144500, 147875, 164775, 169000, 171125, 190125, 210125, 210250, 216750, 219700, 232375, 245650, 252875, 253500, 289000, 295750, 315375, 325125, 329550
Offset: 1

Views

Author

James R. Buddenhagen, Sep 17 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40), A097626 (67).

Extensions

More terms from Ray Chandler, Sep 18 2004
Offset corrected by Michel Marcus, Aug 04 2017

A097244 Numbers n that are the hypotenuse of exactly 31 distinct integer-sided right triangles, i.e., n^2 can be written as a sum of two squares in 31 ways.

Original entry on oeis.org

27625, 47125, 55250, 60125, 61625, 66625, 78625, 82875, 86125, 87125, 94250, 99125, 110500, 112625, 118625, 120250, 123250, 129625, 133250, 134125, 141375, 144625, 148625, 155125, 157250, 157625, 164125, 165750, 172250, 174250, 177125
Offset: 1

Views

Author

James R. Buddenhagen, Sep 17 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097245 (37), A097282 (40), A097626 (67).

A097245 Numbers k that are the hypotenuse of exactly 37 distinct integer-sided right triangles, i.e., k^2 can be written as a sum of two squares in 37 ways.

Original entry on oeis.org

71825, 93925, 122525, 143650, 156325, 173225, 187850, 209525, 215475, 223925, 244205, 245050, 257725, 267325, 273325, 281775, 287300, 296225, 308425, 312650, 346450, 357425, 367575, 375700, 376025, 382925, 409825, 419050, 426725, 430950
Offset: 1

Views

Author

James R. Buddenhagen, Sep 17 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4k+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097282 (40), A097626 (67).

Extensions

More terms from Ray Chandler, Sep 18 2004

A097282 Numbers k that are the hypotenuse of exactly 40 distinct integer-sided right triangles, i.e., k^2 can be written as a sum of two squares in 40 ways.

Original entry on oeis.org

32045, 40885, 45305, 58565, 64090, 67405, 69745, 77285, 80665, 81770, 90610, 91205, 96135, 98345, 98605, 99905, 101065, 107185, 111605, 114985, 117130, 120445, 122655, 124865, 127465, 128180, 128945, 130645, 134810, 135915, 137605
Offset: 1

Views

Author

James R. Buddenhagen, Sep 17 2004

Keywords

Comments

k^2 is always the sum of k^2 and 0^2, but no real triangle can have a zero-length side. Thus, the Mathematica program below searches for length 41 and implicitly drops the zero-squared-plus-n-squared solution. - Harvey P. Dale, Dec 09 2010
If m is a term, then 2*m and p*m are terms where p is any prime of the form 4j+3. - Ray Chandler, Dec 30 2019

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097626 (67).

Programs

  • Mathematica
    Select[Range[150000],Length[PowersRepresentations[#^2,2,2]]==41&] (* Harvey P. Dale, Dec 09 2010 *)

A097626 Numbers k that are the hypotenuse of exactly 67 distinct integer-sided right triangles, i.e., k^2 can be written as a sum of two squares in 67 ways.

Original entry on oeis.org

160225, 204425, 226525, 292825, 320450, 337025, 348725, 386425, 403325, 408850, 416585, 453050, 456025, 480675, 491725, 493025, 499525, 505325, 531505, 535925, 544765, 558025, 574925, 585650, 588965, 602225, 613275, 624325, 637325, 640900
Offset: 1

Views

Author

James R. Buddenhagen, Sep 20 2004

Keywords

Comments

If m is a term, then 2*m and p*m are terms where p is any prime of the form 4j+3. - Chai Wah Wu, Feb 29 2016

Crossrefs

Cf. A004144 (0), A084645 (1), A084646 (2), A084647 (3), A084648 (4), A084649 (5), A097219 (6), A097101 (7), A290499 (8), A290500 (9), A097225 (10), A290501 (11), A097226 (12), A097102 (13), A290502 (14), A290503 (15), A097238 (16), A097239 (17), A290504 (18), A290505 (19), A097103 (22), A097244 (31), A097245 (37), A097282 (40).

Programs

  • Mathematica
    r[a_]:={b, c}/.{ToRules[Reduce[0Vincenzo Librandi, Mar 01 2016 *)

Extensions

More terms from Ray Chandler, Sep 21 2004
Previous Showing 11-20 of 30 results. Next