cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A248589 Decimal expansion of I, a constant appearing (as I^2) in the asymptotic variance of the area of the convex hull of random points in the unit square.

Original entry on oeis.org

1, 0, 6, 1, 8, 2, 4, 1, 3, 6, 4, 9, 0, 9, 6, 9, 6, 6, 2, 8, 0, 5, 3, 7, 8, 2, 8, 7, 3, 9, 8, 9, 4, 7, 1, 3, 1, 0, 0, 5, 5, 5, 9, 6, 4, 4, 7, 3, 2, 8, 8, 9, 2, 1, 2, 0, 4, 0, 5, 0, 1, 5, 1, 8, 3, 3, 8, 9, 8, 3, 3, 4, 5, 5, 6, 1, 2, 1, 1, 6, 1, 2, 4, 1, 3, 6, 9, 0, 0, 1, 0, 4, 2, 5, 9, 4, 5, 9, 0, 2
Offset: 1

Views

Author

Jean-François Alcover, Oct 09 2014

Keywords

Examples

			1.061824136490969662805378287398947131005559644732889212...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.1 Geometric probability constants, p. 481.

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[2]*Pi^2/Gamma[1/4]^2, 10, 100][[1]]
  • PARI
    sqrt(2)*Pi^2/gamma(1/4)^2 \\ G. C. Greubel, Jun 02 2017

Formula

I = sqrt(Pi/8)*(2-integral_{1..infinity} (sqrt(1+s^2)-s)*s^(-3/2) ds).
I = sqrt(Pi/2)*A053004, where A053004 is the arithmetic-geometric mean of 1 and sqrt(2).
I = Pi^(3/2)/(4*A085565), where A085565 is the lemniscate constant A.
I = sqrt(2)*Pi^2/Gamma(1/4)^2.

A337354 a(n) is the numerator of Product_{i=0..n-1} (n-i)^((-1)^ceiling(i/2)).

Original entry on oeis.org

1, 2, 3, 2, 5, 9, 7, 40, 45, 7, 308, 48, 975, 539, 88, 1664, 1105, 24255, 13376, 56576, 41769, 48279, 55936, 226304, 348075, 370139, 671232, 870400, 2082925, 4283037, 13872128, 80773120, 343682625, 4023459, 1553678336, 1900544, 14411758075, 59457783, 1471905792, 1406402560
Offset: 1

Views

Author

Devansh Singh, Aug 24 2020

Keywords

Comments

a(n) is the numerator of (n/(n-1)) * ((n-3)/(n-2)) * ((n-4)/(n-5)) ...

Examples

			a(n)/A337355(n) equals 1, 2, 3/2, 2/3, 5/6, 9/5, 7/5, 40/63, 45/56, 7/4 ...
a(4) = numerator of (4*1)/(3*2) = numerator of 2/3 = 2.
a(5) = numerator of (5*2)/(4*3) = numerator of 5/6 = 5.
                      12  *   9*8  *  5*4  *  1
a(12) = numerator of --------------------------- = 48.
                        11*10  *  7*6  *  3*2
		

Crossrefs

Cf. A337355 (denominators).

Programs

  • PARI
    a(n) = {numerator(prod(i=0, n-1, (n-i)^(-1)^((i+1)\2)))} \\ Andrew Howroyd, Aug 24 2020

Formula

a(n) = numerator of (n*A337355(n-2))/(a(n-2)*(n-1)) for n>=3.
Conjecture: a(4*n)/A337355(4*n) ~ 0.5990701173677... (=A076390). - Andrew Howroyd, Aug 25 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Aug 25 2020

A373534 Decimal expansion of Pi^(1/2)*Gamma(1/20)/(10*Gamma(11/20)).

Original entry on oeis.org

2, 1, 3, 5, 3, 4, 4, 9, 3, 3, 2, 4, 8, 0, 0, 4, 2, 2, 8, 0, 4, 6, 4, 7, 5, 2, 7, 9, 6, 8, 3, 7, 0, 6, 7, 7, 8, 8, 1, 0, 8, 7, 9, 3, 6, 6, 0, 1, 6, 4, 9, 4, 0, 0, 4, 0, 7, 7, 3, 1, 4, 4, 2, 9, 1, 0, 8, 7, 0, 3, 3, 0, 0, 1, 4, 9, 6, 8, 8, 3, 7, 8, 0, 6, 6, 5, 8, 3, 6, 5, 1, 2, 2, 2, 2, 2, 0, 5, 9, 6, 5
Offset: 1

Views

Author

Takayuki Tatekawa, Jun 08 2024

Keywords

Comments

Constants from generalized Pi integrals: the case of n=20.

Examples

			2.135344933248004228046475279683...
		

Crossrefs

Programs

  • Maple
    (2*sqrt(Pi)*GAMMA(21/20))/GAMMA(11/20): evalf(%, 102); # Peter Luschny, Jun 17 2024
  • Mathematica
    RealDigits[2*Sqrt[Pi]/20*Gamma[1/20]/Gamma[11/20], 10, 5001][[1]]

Formula

Equals 2*Integral_{x=0..1} dx/sqrt(1-x^20).
Equals (2*sqrt(Pi)*Gamma(21/20))/Gamma(11/20). - Peter Luschny, Jun 17 2024

A371860 Decimal expansion of Integral_{x=0..1} 1 / sqrt(1 - x^3) dx.

Original entry on oeis.org

1, 4, 0, 2, 1, 8, 2, 1, 0, 5, 3, 2, 5, 4, 5, 4, 2, 6, 1, 1, 7, 5, 0, 1, 9, 0, 7, 9, 0, 5, 0, 2, 9, 4, 1, 3, 5, 4, 6, 3, 0, 2, 2, 2, 0, 5, 4, 2, 3, 9, 8, 6, 0, 9, 6, 1, 8, 1, 9, 9, 3, 9, 8, 7, 0, 7, 6, 2, 8, 4, 7, 6, 5, 9, 8, 1, 8, 0, 3, 2, 9, 6, 0, 7, 0, 8, 5, 2, 2, 6, 6, 4, 8, 5, 0, 2, 4, 7, 8, 4, 7, 0, 5, 5
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.4021821053254542611750190790502941354630222...
		

Crossrefs

Decimal expansions of Integral_{x=0..1} 1 / sqrt(1 - x^k) dx: A019669 (k=2), this sequence (k=3), A085565 (k=4).

Programs

  • Mathematica
    RealDigits[Sqrt[Pi] Gamma[4/3]/Gamma[5/6], 10, 104][[1]]
    RealDigits[Gamma[1/3]^3 / (2^(4/3)*Sqrt[3]*Pi), 10, 104][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)

Formula

Equals sqrt(Pi) * Gamma(4/3) / Gamma(5/6).
Equals Gamma(1/3)^3 / (2^(4/3) * sqrt(3) * Pi). - Vaclav Kotesovec, Apr 09 2024
Equals A118292/2. - Hugo Pfoertner, Apr 09 2024
Previous Showing 21-24 of 24 results.