cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A265010 Numbers which are the product of two tetrahedral numbers.

Original entry on oeis.org

0, 1, 4, 10, 16, 20, 35, 40, 56, 80, 84, 100, 120, 140, 165, 200, 220, 224, 286, 336, 350, 364, 400, 455, 480, 560, 660, 680, 700, 816, 840, 880, 969, 1120, 1140, 1144, 1200, 1225, 1330, 1456, 1540, 1650, 1680, 1771, 1820, 1960, 2024, 2200, 2240
Offset: 1

Views

Author

R. J. Mathar, Nov 30 2015

Keywords

Comments

This is for the tetrahedral numbers A000292 what A085780 is for the triangular numbers.
The subsequence of numbers with more than one factorization starts 0, 560 (= 65*10 = 1*560), 19600 (= 560*15 = 19600*1), 28560 (=816 *35 = 7140*4), 43680, 292600, 416640, ...

Examples

			Contains 480=4*120, 560=1*560, 660=4*165, 680=1*680, 700=20*35, ....
		

Crossrefs

Programs

  • Maple
    # reuses code of A000292
    isA265010 := proc(n)
        if n = 0 then
            return true;
        end if;
        for d in numtheory[divisors](n) do
            if isA000292(d) and isA000292(n/d) then
                return true;
            end if;
        end do:
        false;
    end proc:
    for n from 0 to 4000 do
        if isA265010(n) then
            printf("%d, ",n);
        end if;
    end do:
  • Mathematica
    lim = 2240; t = Table[Binomial[n + 2, 3], {n, 0, 10^3}]; f[n_] := Select[{#, n/#} & /@ Select[Divisors[n], # <= Sqrt@ n && MemberQ[t, #] &], MemberQ[t, Last@ #] &]; Select[Range@ lim, Length@ f@ # > 0 &] (* Michael De Vlieger, Nov 30 2015 *)

Formula

{n: n = A000292(i)*A000292(j) for some i,j>=0}.

A334129 Numbers that can be written as a product of one or more consecutive triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 18, 21, 28, 36, 45, 55, 60, 66, 78, 91, 105, 120, 136, 150, 153, 171, 180, 190, 210, 231, 253, 276, 300, 315, 325, 351, 378, 406, 435, 465, 496, 528, 561, 588, 595, 630, 666, 703, 741, 780, 820, 861, 900, 903, 946, 990, 1008, 1035
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2020

Keywords

Crossrefs

Programs

  • Mathematica
    lmt = 1050; t = PolygonalNumber[3, #] & /@ Range[0, Sqrt[ 2lmt]]; f[n_] := Select[ Times @@@ Partition[t, n +1, 1], # < lmt &]; lst = {}; k = 0; While[f@k != {}, lst = Join[lst, f@k]; k++]; Union@lst (* Robert G. Wilson v, Apr 16 2020 *)
  • PARI
    list(lim)=if(lim<1, return(if(lim<0,[],[0]))); my(v=List([0,1]),t=1,m=2); lim\=1; while(t<=lim, listput(v,t); t=m*m++/2); for(e=1,m, for(i=3,m-e, t=factorback(Vec(v[i..i+e])); if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Apr 16 2020

A334130 Numbers that can be written as a product of distinct triangular numbers.

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 18, 21, 28, 30, 36, 45, 55, 60, 63, 66, 78, 84, 90, 91, 105, 108, 120, 126, 135, 136, 150, 153, 165, 168, 171, 180, 190, 198, 210, 216, 231, 234, 253, 270, 273, 276, 280, 300, 315, 325, 330, 351, 360, 378, 396, 406, 408, 420, 435, 450
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 14 2020

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # for all terms <= N
    S:= {0,1}:
    for i from 2 do
      t:= i*(i+1)/2;
      if t > N then break fi;
      S:= S union select(`<=`,map(`*`,S,t),N)
    od:
    sort(convert(S,list)); # Robert Israel, Apr 21 2020

A356748 Numbers k such that k and k+1 are both products of 2 triangular numbers.

Original entry on oeis.org

0, 9, 90, 135, 945, 1710, 1890, 4959, 5670, 8910, 10584, 11025, 11934, 13860, 19305, 21735, 26334, 32130, 36855, 44550, 49140, 65340, 107415, 138600, 172080, 239085, 305370, 351540, 366795, 459360, 849555, 873180, 933660, 1100385, 1413720, 1516410, 1904175, 2297295
Offset: 1

Views

Author

Amiram Eldar, Aug 25 2022

Keywords

Comments

Numbers k such that k and k+1 are both terms of A085780.
Are all the terms divisible by 9?
Yes, because the product of two triangular numbers == 0, 1, 3 or 6 (mod 9). - Robert Israel, Apr 05 2023

Examples

			9 is a term since 9 = 3*3 and 10 = 1*10 are both products of 2 triangular numbers.
		

Crossrefs

Cf. A085780.

Programs

  • Maple
    N:= 10^9: # for terms <= N
    S:= {0}:
    for x from 1 do
      s:= x*(x+1)/2;
      if s^2 > N then break fi;
      for y from x do
        t:= y*(y+1)/2;
        if s*t > N then break fi;
        S:= S union {s*t};
    od od:
    L:= sort(convert(S,list)):
    DL:= L[2..-1]-L[1..-2]:
    J:= select(t -> DL[t]=1, [$1..nops(DL)]):
    L[J]; # Robert Israel, Apr 05 2023
  • Mathematica
    t = Table[n*(n + 1)/2, {n, 0, 3000}]; s = Select[Union[Flatten[Outer[Times, t, t]]], # <= t[[-1]] &]; i = Position[Differences[s], 1] // Flatten; s[[i]]
    Take[Select[Partition[Union[Times@@@Tuples[Accumulate[Range[0,2500]],2]],2,1],#[[2]] - #[[1]]==1&][[All,1]],40] (* Harvey P. Dale, Oct 23 2022 *)
  • Python
    from itertools import count, islice
    from sympy import divisors, integer_nthroot
    def A356748_gen(startvalue=0): # generator of terms >= startvalue
        if startvalue <= 0:
            yield 0
        flag = False
        for n in count(max(startvalue,1)):
            for d in divisors(m:=n<<2):
                if d**2 > m:
                    flag = False
                    break
                if integer_nthroot((d<<2)+1,2)[1] and integer_nthroot((m//d<<2)+1,2)[1]:
                    if flag: yield n-1
                    flag = True
                    break
            else:
                flag = False
    A356748_list = list(islice(A356748_gen(),10)) # Chai Wah Wu, Aug 28 2022

A210446 Largest integer which is both the product of two integers summing to n+1 and the product of two integers summing to n-1.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 0, 0, 16, 18, 0, 30, 0, 36, 48, 0, 0, 70, 0, 90, 96, 90, 0, 126, 144, 126, 160, 180, 0, 210, 0, 0, 240, 216, 288, 300, 0, 270, 336, 378, 0, 420, 0, 450, 480, 396, 0, 510, 576, 594, 576, 630, 0, 700, 720, 756, 720, 630, 0, 858, 0, 720, 960, 0
Offset: 1

Views

Author

Enric Reverter i Bigas, Jan 20 2013

Keywords

Comments

a(n) is also the difference between ((n+1)/2)^2 and Q, where Q is the smallest square which exceeds n by a square q (or by 0 if n itself is a square): ((n+1) / 2)^2 - a(n) = Q; Q - n = q; (Q, q squares of an integer if n is odd).
If n is an odd nonprime > 1, a(n)/16 is the product of two triangular numbers (see A085780).
If n is 1, a prime or a power of 2, a(n) = 0.

Examples

			a(15) = 48 because 6*8 = 12*4 = 48 and 6 + 8 = 15 - 1; 12 + 4 = 15 + 1.
a(45) = 480 because 20*24 = 16*30 = 480 and 20 + 24 = 45 - 1; 16 + 30 = 45 + 1.
(Also 448 = 28*16 = 14*32, but 480 is larger.)
		

Crossrefs

Cf. A085780.

Programs

  • Mathematica
    a[n_] := Module[{x,y,p}, Max[p /. List@ToRules@Reduce[p == x*(n-1-x) == y*(n+1-y), {x, y, p}, Integers]]]; Table[a[n], {n, 100}] (* Giovanni Resta, Jan 22 2013 *)
  • PARI
    a(n) = {my(x=vector(n\2), y=vector(n\2)); for(k=1, n\2, x[k]=k*(n-1-k); y[k]=k*(n+1-k)); v=setintersect(x, y); if(#v>0, v[#v], 0); } \\ Jinyuan Wang, Oct 13 2019

Formula

a(n) = (f1^2 - 1)*(f2^2 - 1)/4 (with f1 and f2 the nearest integers such that f1*f2 = n).

A346919 Numbers that are both palindromes (A002113) and terms of A072389.

Original entry on oeis.org

0, 4, 252, 2112, 2772, 6336, 21012, 27072, 42924, 48384, 48984, 63036, 252252, 297792, 407704, 2327232, 2572752, 2747472, 2774772, 2958592, 4457544, 4811184, 6378736, 6396936, 25777752, 27633672, 29344392, 63099036, 63399336, 404080404, 409757904, 441525144
Offset: 1

Views

Author

Dumitru Damian, Aug 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    p[n_] :=  n*(n + 1); m = 1000; Select[Union[ Times @@@ Tuples[p /@ Range[0, m], {2}]], # <= 2*p[m] && PalindromeQ[#] &] (* Amiram Eldar, Aug 13 2021 *)
  • SageMath
    # the sequence numbers up to a limit
    def a346919_upto(lim, alst=set([0])):
        for i in range(1, int(lim**0.25)):
            for j in range(i, int((lim/(i*(i+1)))**0.5)+1):
                if all([(k:=i*(i+1)*j*(j+1))<=lim, str(k)==str(k)[::-1]]): alst.add(k)
        return sorted(alst)
    print(a346919_upto(10**9)) # Dumitru Damian, Apr 05 2023

Formula

Intersection of A072389 and A002113.
Intersection of 4*A085780 and A002113.

Extensions

More terms from Jinyuan Wang, Aug 07 2021
Previous Showing 11-16 of 16 results.