cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 43 results. Next

A361089 a(n) = smallest integer x such that Sum_{k = 2..x} 1/(k*log(log(k))) > n.

Original entry on oeis.org

3, 5, 8, 21, 76, 389, 2679, 23969, 269777, 3717613, 61326301, 1188642478, 26651213526, 682263659097, 19720607003199, 637490095320530, 22857266906194526, 902495758030572213, 38993221443197045348, 1833273720522384358862
Offset: 2

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Because lim_{x->oo} (Sum_{k=2..x} 1 / (k*log(log(k)))) - li(log(x)) = 2.7977647035208... (see A363078) then a(n) = round(w) where w is the solution of the equation li(log(w)) + 2.7977647035208... = n.

Examples

			a(2) = 3 because Sum_{k=2..3} 1/(k*log(log(k))) = 2.18008755... > 2 and Sum_{k=2..2} 1/(k*log(log(k))) = -1.364208386450... < 2.
a(7) = 389 because Sum_{k=2..389} 1/(k*log(log(k))) = 7.000345... > 7 and Sum_{k=2..388} 1/(k*log(log(k))) = 6.99890560988... < 7.
		

Crossrefs

Programs

  • Mathematica
    (*slow procedure*)
    lim = 2; sum = 0; aa = {}; Do[sum = sum + N[1/(k Log[Log[k]]), 100];
     If[sum >= lim, AppendTo[aa, k]; Print[{lim, sum, k}];
      lim = lim + 1], {k, 2, 269777}];aa
    (*quick procedure *)
    aa = {3}; cons = 2.79776470352080492766050456553352884330850083202326989577856315;
    Do[ww = w /. NSolve[LogIntegral[Log[w]] + cons == n, w];
     AppendTo[aa, Round[ww][[1]]], {n, 3, 21}]; aa

Formula

For n >= 3, a(n) = round(w) where w is the solution of the equation li(log(w)) + 2.7977647035208... = n.

A363078 Decimal expansion of lim_{x->oo} (Sum_{k=2..x} 1 / (k*log(log(k)))) - li(log(x)).

Original entry on oeis.org

2, 7, 9, 7, 7, 6, 4, 7, 0, 3, 5, 2, 0, 8, 0, 4, 9, 2, 7, 6, 6, 0, 5, 0, 4, 5, 6, 5, 5, 3, 3, 5, 2, 8, 8, 4, 3, 3, 0, 8, 5, 0, 0, 8, 3, 2, 0, 2, 3, 2, 6, 9, 8, 9, 5, 7, 7, 8, 5, 6, 3, 1, 5, 0, 0, 5, 0, 6, 4, 3, 2, 8, 9, 3, 6, 2, 4, 5, 4, 5, 9, 4, 8, 3, 6, 8, 6, 8, 2, 5, 4, 8, 1, 8, 2, 9, 5, 4, 1, 9, 2, 5, 5, 0, 8
Offset: 1

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Value computed and communicated by Pascal Sebah.
For the smallest integer x such that Sum_{k = 2..x} 1/(k*log(log(k))) > n see A361089.

Examples

			2.7977647035208...
		

Crossrefs

A091589 Decimal expansion of the analog of the Mertens constant B_2 in the asymptotic series for the variance of the number of prime factors Omega.

Original entry on oeis.org

7, 6, 4, 7, 8, 4, 8, 0, 9, 7, 9, 7, 8, 4, 6, 7, 6, 3, 0, 6, 4, 6, 3, 2, 2, 6, 2, 3, 4, 1, 0, 5, 2, 7, 6, 4, 6, 3, 0, 9, 5, 8, 0, 4, 3, 3, 1, 2, 9, 0, 4, 2, 7, 5, 4, 7, 6, 7, 0, 1, 3, 8, 7, 8, 0, 2, 8, 6, 1, 7, 8, 2, 1, 2, 4, 9, 5, 5, 9, 8, 9, 1, 4, 4, 2, 2, 0, 1, 4, 2, 0, 5, 4, 3, 9, 6, 8, 7, 8, 6
Offset: 0

Views

Author

Eric W. Weisstein, Jan 22 2004

Keywords

Examples

			0.76478480...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 95.

Crossrefs

Cf. A001222, A013661 (Pi^2/6), A086242, A083342.

Formula

Equals A083342 minus Pi^2/6 plus A086242. - R. J. Mathar, Oct 14 2010
Equals lim_{m->oo} ((1/m) * Sum_{k=1..m} A001222(k)^2 - ((1/m) * Sum_{k=1..m} A001222(k))^2 - log(log(m))). - Amiram Eldar, Jan 09 2024

Extensions

More digits from R. J. Mathar, Oct 14 2010
More digits (using terms in A083342 and A086242) from Vaclav Kotesovec, Aug 12 2019

A382552 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p).

Original entry on oeis.org

6, 0, 1, 9, 0, 8, 3, 2, 5, 6, 9, 8, 8, 4, 0, 1, 6, 0, 0, 5, 2, 8, 8, 5, 6, 7, 0, 6, 6, 6, 4, 9, 7, 3, 0, 3, 5, 6, 0, 8, 5, 8, 6, 2, 4, 0, 9, 2, 1, 3, 1, 4, 1, 0, 3, 9, 8, 1, 8, 3, 2, 6, 8, 5, 3, 4, 5, 2, 6, 6, 8, 4, 6, 5, 2, 3, 2, 1, 8, 5, 7, 5, 9, 6, 1, 0, 8, 8, 9, 3, 5, 9, 3, 2, 6, 7, 2, 9, 6, 1
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.60190832569884016005288567066649730356085862...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^2*p)) \\ Amiram Eldar, Apr 01 2025

Formula

Equals -A136141 + A086242.
Equals Sum_{k>=3} (k-2) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382584 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p*(p + 1)).

Original entry on oeis.org

1, 9, 0, 2, 2, 2, 4, 7, 7, 1, 5, 3, 0, 2, 2, 1, 0, 8, 3, 1, 4, 1, 2, 4, 6, 1, 7, 3, 9, 0, 9, 4, 9, 2, 4, 3, 0, 3, 6, 8, 0, 8, 8, 3, 2, 8, 9, 3, 7, 8, 6, 8, 0, 7, 1, 5, 8, 8, 9, 7, 2, 6, 7, 6, 1, 8, 6, 9, 1, 6, 2, 6, 9, 0, 2, 0, 7, 9, 5, 6, 5, 4, 2, 0, 0, 3, 0, 5, 5, 8, 9, 6, 9, 1, 1, 2, 2, 1, 9, 2, 9, 7, 3
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.1902224771530221083141246173909492430368088328937868071588972676186916269020795654200305...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^2*p*(p+1))) \\ Amiram Eldar, Apr 02 2025

Formula

Equals -3*A136141/4 + A086242/2 + A179119/4.
Equals Sum_{k>=2} (k-1) * (P(2*k) + P(2*k+1)), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025

A119723 Numerator of Sum[ (-1)^(k-1) * 1/(Prime[k]-1)^2, {k,1,n}].

Original entry on oeis.org

1, 3, 13, 113, 2861, 709, 45601, 408809, 49595489, 2426258561, 485934733, 485460413, 2429223061, 2427480661, 1284905668069, 217047437215261, 182605590283392901, 36508279615059377, 36518889897389297
Offset: 1

Views

Author

Alexander Adamchuk, Jun 13 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Numerator[Table[Sum[(-1)^(i-1)*1/(Prime[i]-1)^2, {i, 1, n}], {n, 1, 30}]]

Formula

a(n) = numerator[ Sum[ (-1)^(k-1) * 1/(Prime[k]-1)^2, {k,1,n}]].

A154937 Decimal expansion of sum_q 1/(q-1)^2 over the semiprimes q = 4,6,9,10,...

Original entry on oeis.org

2, 0, 9, 7, 8, 8, 3, 2, 3, 9, 4, 0, 0, 1, 9, 4, 9, 2, 7, 5, 5, 3, 6, 8, 6, 0, 2, 4, 6, 9, 1, 8, 9, 2, 3, 6, 2, 6, 8, 6, 1, 3, 9, 3, 2, 9, 2, 1, 8, 5, 1, 3, 4, 3, 7, 5, 2, 8, 1, 7
Offset: 0

Views

Author

R. J. Mathar, Jan 17 2009

Keywords

Comments

Semiprime analog of A086242.

Examples

			Equals 0.2097883239400194927... = 1/3^2+1/5^2+1/8^2+1/9^2+1/13^2+...
		

Formula

Equals Sum_{i>=1} 1/(A001358(i)-1)^2.

A336908 Decimal expansion of Sum_{p prime} (p^2 + p - 1)/(p^2 *(p - 1)^2).

Original entry on oeis.org

1, 6, 9, 5, 9, 7, 4, 2, 4, 3, 7, 5, 7, 3, 6, 4, 9, 1, 7, 2, 7, 5, 0, 7, 7, 2, 2, 5, 5, 4, 6, 1, 3, 4, 1, 6, 0, 6, 2, 5, 1, 0, 9, 9, 5, 3, 0, 1, 8, 6, 1, 1, 0, 8, 5, 2, 8, 3, 7, 7, 6, 4, 7, 2, 8, 9, 6, 7, 7, 9, 7, 1, 4, 2, 6, 6, 8, 7, 7, 7, 7, 8, 8, 1, 4, 7, 4
Offset: 1

Views

Author

Amiram Eldar, Aug 07 2020

Keywords

Comments

The asymptotic variance of Omega(k) - omega(k) (A046660).
The asymptotic mean of Omega(k) - omega(k) is Sum_{p prime} 1/(p*(p-1)) = 0.773156... (A136141).

Examples

			1.695974243757364917275077225546134160625109953018611...
		

Crossrefs

Programs

  • Mathematica
    m = 100; RealDigits[PrimeZetaP[2] + NSum[n * PrimeZetaP[n], {n, 3, Infinity}, WorkingPrecision -> 2*m, NSumTerms -> 3*m], 10, m][[1]]
  • PARI
    sumeulerrat((p^2 + p - 1)/(p^2 *(p - 1)^2)) \\ Hugo Pfoertner, Aug 08 2020

Formula

Equals lim_{m->oo} (1/m) * Sum_{k=1..m} d(k)^2 - ((1/m) * Sum_{k=1..m} d(k))^2, where d(k) = Omega(k) - omega(k) = A001222(k) - A001221(k) = A046660(k).
Equals P(2) + Sum_{k>=3} k*P(k), where P is the prime zeta function.
Equals A086242 -A085548 +A136141 . - R. J. Mathar, Aug 19 2022

A366249 Decimal expansion of lim_{x->oo} (Sum_{primes p<=x} 1/(p*log(log(p)))) - log(log(log(x))).

Original entry on oeis.org

2, 9, 3, 8, 3, 2, 9, 0, 1
Offset: 1

Views

Author

Artur Jasinski, Oct 05 2023

Keywords

Comments

Value computed and communicated by Pascal Sebah.

Examples

			2.93832901...
		

Crossrefs

A380689 Decimal expansion of Sum_{p prime} (p + 1)^3/((p - 1)^3*p^2).

Original entry on oeis.org

7, 8, 6, 6, 6, 6, 5, 3, 9, 7, 3, 3, 1, 8, 0, 4, 4, 9, 2, 4, 7, 6, 9, 1, 9, 3, 2, 2, 4, 7, 0, 6, 9, 0, 8, 5, 5, 9, 7, 8, 9, 3, 4, 7, 1, 6, 7, 5, 8, 8, 5, 2, 0, 7, 5, 4, 9, 9, 4, 5, 3, 1, 2, 1, 8, 2, 8, 4, 1, 5, 0, 1, 4, 6, 4, 5, 6, 3, 1, 9, 4, 2, 6, 1, 5, 4, 2, 2, 6, 9, 7, 9, 0, 0, 1, 9, 3, 1, 6, 7, 6, 5, 3, 8, 3, 6
Offset: 1

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			7.86666539733180449247691932247069085597893471675885...
		

Crossrefs

Programs

  • PARI
    sumeulerrat((p + 1)^3/((p - 1)^3*p^2)) \\ Amiram Eldar, Apr 02 2025

Formula

Equals -A085548 + 6*A136141 - 4*A086242 + 8*A380840.
Equals P(2) + Sum_{k>=3} (4*k^2 - 16*k + 18) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025
Previous Showing 11-20 of 43 results. Next