cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A328723 Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^3.

Original entry on oeis.org

8, 5, 4, 8, 2, 4, 7, 6, 6, 6, 4, 8, 5, 4, 3, 0, 1, 0, 2, 3, 5, 6, 9, 0, 0, 8, 3, 5, 3, 8, 1, 3, 7, 6, 9, 7, 1, 3, 8, 3, 9, 6, 4, 6, 4, 9, 3, 7, 0, 0, 5, 2, 8, 2, 7, 3, 0, 7, 0, 2, 4, 9, 9, 3, 8, 1, 1, 2, 3, 8, 3, 3, 4, 1, 2, 6, 8, 9, 4, 2, 8, 1, 2, 8, 4, 2, 0, 9, 5, 6, 7
Offset: 0

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A080891 and s = 3.

Examples

			1 - 1/2^3 - 1/3^3 + 1/4^3 + 1/6^3 - 1/7^3 - 1/8^3 + 1/9^3 + ... = 0.8548247666...
		

Crossrefs

Cf. A080891.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k^3, where d is a fundamental discriminant: A251809 (d=-8), A327135 (d=-7), A153071 (d=-4), A129404 (d=-3), A002117 (d=1), this sequence (d=5), A329715 (d=8), A329716 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(5,k)/k^s: A086466 (s=1), A328717 (s=2), this sequence (s=3).

Programs

  • Mathematica
    (PolyGamma[2, 1/5] - PolyGamma[2, 2/5] - PolyGamma[2, 3/5] + PolyGamma[2, 4/5])/(-250) // RealDigits[#, 10, 102] & // First

Formula

Equals (zeta(3,1/5) - zeta(3,2/5) - zeta(3,3/5) + zeta(3,4/5))/25, where zeta(s,a) is the Hurwitz zeta function.
Equals (polylog(3,u) - polylog(3,u^2) - polylog(3,u^3) + polylog(3,u^4))/sqrt(5), where u = exp(2*Pi*i/5) is a 5th primitive root of unity, i = sqrt(-1).
Equals (polygamma(2,1/5) - polygamma(2,2/5) - polygamma(2,3/5) - polygamma(2,4/5))/(-250).
Equals 1/(Product_{p prime == 1 or 4 (mod 5)} (1 - 1/p^3) * Product_{p prime == 2 or 3 (mod 5)} (1 + 1/p^3)). - Amiram Eldar, Dec 17 2023

A241519 Denominators of b(n) = b(n-1)/2 + 1/(2*n), b(0)=0.

Original entry on oeis.org

1, 2, 2, 12, 3, 15, 60, 840, 105, 630, 630, 13860, 6930, 180180, 360360, 144144, 9009, 306306, 306306, 11639628, 14549535, 14549535, 58198140, 2677114440, 334639305, 3346393050
Offset: 0

Views

Author

Paul Curtz, Apr 24 2014

Keywords

Comments

Generally, 2*b(n) = b(n-1) + f(n). See, for f(n)=n, A000337(n)/2^n.
a(0)=1. b(n) is mentioned in A241269.
Difference table of b(n):
0, 1/2, 1/2, 5/12, 1/3, 4/15, ...
1/2, 0, -1/12, -1/12, -1/15, -1/20, ...
-1/2, -1/12, 0, 1/60, 1/60, 11/840, ...
5/12, 1/12, 1/60, 0, -1/280, -1/280, ...
etc.
b(n) is mentioned in A241269 as an autosequence of the first kind.
The denominators of the first two upper diagonals are the positive Apéry numbers, A005430(n+1). Compare to the array in A003506.
Numerators: 0, 1, 1, 5, 1, 4, 13, 151, 16, 83, 73, 1433, 647, 15341, ... .

Examples

			0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, 16/105, 83/630, 73/630, ...
b(1) = (0+1)/2, hence a(1)=2.
b(2) = (1/2+1/2)/2 = 1/2, hence a(2)=2.
b(3) = (1/2+1/3)/2 = 5/12, hence a(3)=12.
		

Crossrefs

Cf. A086466.
Cf. A242376 (numerators).

Programs

  • Mathematica
    b[0] = 0; b[n_] := b[n] = 1/2*(b[n-1] + 1/n); Table[b[n] // Denominator, {n, 0, 25}] (* Jean-François Alcover, Apr 25 2014 *)
    Table[-Re[LerchPhi[2, 1, n + 1]], {n, 0, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
    -Re[LerchPhi[2, 1, Range[20]]] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)
    RecurrenceTable[{b[n] == b[n - 1]/2 + 1/(2 n), b[0] == 0}, b[n], {n, 20}] // Denominator (* Eric W. Weisstein, Dec 11 2017 *)

Formula

b(n) = -Re(Phi(2, 1, n + 1)) where Phi denotes the Lerch transcendent. - Eric W. Weisstein, Dec 11 2017

Extensions

Extension, after a(13), from Jean-François Alcover, Apr 24 2014

A326919 Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k.

Original entry on oeis.org

1, 1, 8, 7, 4, 1, 0, 4, 1, 1, 7, 2, 3, 7, 2, 5, 9, 4, 8, 7, 8, 4, 6, 2, 5, 2, 9, 7, 9, 4, 9, 3, 6, 3, 0, 2, 9, 9, 9, 2, 3, 3, 4, 6, 8, 6, 1, 6, 5, 0, 3, 5, 7, 5, 7, 5, 1, 5, 2, 0, 2, 3, 8, 5, 8, 5, 8, 4, 5, 8, 8, 9, 0, 9, 3, 4, 0, 7, 1, 5, 7, 5, 4, 8, 2, 0, 8, 9, 9, 9, 9
Offset: 1

Views

Author

Jianing Song, Nov 19 2019

Keywords

Comments

Let Chi() be a primitive character modulo d, the so-called Dirichlet L-series L(s,Chi) is the analytic continuation (see the functional equations involving L(s,Chi) in the MathWorld link entitled Dirichlet L-Series) of the sum Sum_{k>=1} Chi(k)/k^s, Re(s)>0 (if d = 1, the sum converges requires Re(s)>1).
If s != 1, we can represent L(s,Chi) in terms of the Hurwitz zeta function by L(s,Chi) = (Sum_{k=1..d} Chi(k)*zeta(s,k/d))/d^s.
L(s,Chi) can also be represented in terms of the polylog function by L(s,Chi) = (Sum_{k=1..d} Chi'(k)*polylog(s,u^k))/(Sum_{k=1..d} Chi'(k)*u^k), where Chi' is the complex conjugate of Chi, u is any primitive d-th root of unity.
If m is a positive integer, we have L(m,Chi) = (Sum_{k=1..d} Chi(k)*polygamma(m-1,k/d))/((-d)^m*(m-1)!).
In this sequence we have Chi = A175629 and s = 1.

Examples

			1 + 1/2 - 1/3 + 1/4 - 1/5 - 1/6 + 1/8 + 1/9 - 1/10 + 1/11 - 1/12 - 1/13 + ... = Pi/sqrt(7) = 1.1874104117...
		

Crossrefs

Cf. A175629.
Decimal expansion of Sum_{k>=1} Kronecker(d,k)/k, where d is a fundamental discriminant: A093954 (d=-8), this sequence (d=-7), A003881 (d=-4), A073010 (d=-3), A086466 (d=5), A196525 (d=8), A196530 (d=12).
Decimal expansion of Sum_{k>=1} Kronecker(-7,k)/k^s: this sequence (s=1), A103133 (s=2), A327135 (s=3).

Programs

  • Mathematica
    RealDigits[Pi/Sqrt[7], 10, 102] // First
  • PARI
    default(realprecision, 100); Pi/sqrt(7)

Formula

Equals Pi/sqrt(7). This is related to the class number formula: if d<0 is the fundamental discriminant of an imaginary quadratic number field, Chi(k) = Kronecker(d,k), then L(1,Chi) = Sum_{k>=1} Kronecker(d,k)/k = 2*Pi*h(d)/(sqrt(|d|)*w(d)), where h(d) is the class number of K = Q[sqrt(d)], w(d) is the number of elements in K whose norms are 1 (w(d) = 6 if d = -3, 4 if d = -4 and 2 if d < -4). Here d = -7, h(d) = 1, w(d) = 2.
Equals (polylog(1,u) + polylog(1,u^2) - polylog(1,u^3) + polylog(1,u^4) - polylog(1,u^5) - polylog(1,u^6))/sqrt(-7), where u = exp(2*Pi*i/7) is a 7th primitive root of unity, i = sqrt(-1).
Equals (polygamma(0,1/7) + polygamma(0,2/7) - polygamma(0,3/7) + polygamma(0,4/7) - polygamma(0,5/7) - polygamma(0,6/7))/49.
Equals 1/Product_{p prime} (1 - Kronecker(-7,p)/p), where Kronecker(-7,p) = 0 if p = 7, 1 if p == 1, 2 or 4 (mod 7) or -1 if p == 3, 5 or 6 (mod 7). - Amiram Eldar, Dec 17 2023

A145435 Decimal expansion of log(1/2 + 1/sqrt(2))/sqrt(5).

Original entry on oeis.org

0, 8, 4, 1, 7, 7, 4, 0, 8, 0, 0, 0, 8, 3, 3, 2, 0, 3, 0, 3, 5, 5, 4, 8, 6, 9, 5, 3, 8, 4, 6, 6, 7, 2, 6, 7, 8, 8, 5, 5, 3, 1, 8, 4, 0, 3, 9, 9, 8, 8, 4, 5, 8, 2, 8, 8, 7, 7, 5, 9, 0, 1, 1, 7, 7, 4, 1, 6, 8, 9, 0, 6, 6, 6, 5, 1, 8, 7, 0, 6, 4, 8, 1, 0, 6, 4, 0, 3, 2, 2, 6, 9, 1
Offset: 0

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Comments

This is an erroneous version of A086466 produced by the Apelblat formula, which contains two typos.

Examples

			0.084177408000833203035548695384667267885531840399884582887759..
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.42.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); 1/5*Log(1/2+1/2*2^(1/2))*5^(1/2); // G. C. Greubel, Oct 02 2018
  • Maple
    1/5*ln(1/2+1/2*2^(1/2))*5^(1/2) ;
  • Mathematica
    Join[{0},RealDigits[Log[1/2+1/Sqrt[2] ]/Sqrt[5],10,120][[1]]] (* Harvey P. Dale, May 24 2016 *)
  • PARI
    default(realprecision, 100); 1/5*log(1/2+1/2*2^(1/2))*5^(1/2) \\ G. C. Greubel, Oct 02 2018
    

Formula

Equals log(A014176/2)*A020762.

Extensions

Uncovered Apelblat errors. - R. J. Mathar, Mar 04 2009
Previous Showing 11-14 of 14 results.