A182013
Triangle of partial sums of Motzkin numbers.
Original entry on oeis.org
1, 2, 1, 4, 3, 2, 8, 7, 6, 4, 17, 16, 15, 13, 9, 38, 37, 36, 34, 30, 21, 89, 88, 87, 85, 81, 72, 51, 216, 215, 214, 212, 208, 199, 178, 127, 539, 538, 537, 535, 531, 522, 501, 450, 323, 1374, 1373, 1372, 1370, 1366, 1357, 1336, 1285, 1158, 835, 3562, 3561
Offset: 0
Triangle begins:
1
2, 1
4, 3, 2
8, 7, 6, 4
17, 16, 15, 13, 9
38, 37, 36, 34, 30, 21
89, 88, 87, 85, 81, 72, 51
216, 215, 214, 212, 208, 199, 178, 127
539, 538, 537, 535, 531, 522, 501, 450, 323
Diagonal elements = Motzkin numbers (
A001006).
First column = partial sums of Motzkin numbers (
A086615).
-
M[n_] := If[n==0, 1, Coefficient[(1+x+x^2)^(n+1), x^n]/(n+1)]; Flatten[Table[Sum[M[i], {i,k,n}], {n,0,30}, {k,0,n}]]
-
M(n):=coeff(expand((1+x+x^2)^(n+1)),x^n)/(n+1);
create_list(sum(M(i),i,k,n),n,0,6,k,0,n);
A348869
Triangle T(n,c) counting Motzkin Paths of length n with c sections starting with an up-step at level 0.
Original entry on oeis.org
1, 2, 4, 1, 8, 4, 17, 12, 1, 38, 32, 6, 89, 82, 24, 1, 216, 208, 80, 8, 539, 530, 243, 40, 1, 1374, 1364, 702, 160, 10, 3562, 3551, 1975, 564, 60, 1, 9360, 9348, 5484, 1840, 280, 12, 24871, 24858, 15144, 5716, 1125, 84, 1, 66706, 66692, 41768, 17208, 4102, 448, 14
Offset: 2
The triangle starts
1
2
4 1
8 4
17 12 1
38 32 6
89 82 24 1
216 208 80 8
539 530 243 40 1
1374 1364 702 160 10
3562 3551 1975 564 60 1
9360 9348 5484 1840 280 12
24871 24858 15144 5716 1125 84 1
66706 66692 41768 17208 4102 448 14
T(4,2)=1 counts udud.
T(5,1)=8 counts uuddh uudhd uuhdd udhhh uhudd uhdhh uhhdh uhhhd.
T(5,2)=4 counts ududh uduhd udhud uhdud.
T(2n,n) = 1 counts udududu... (ud repeated n times).
-
A348869 := proc(n,c)
local g,x,y ;
g := add( A086615(i)*x^(i+2),i=0..n) ;
1/(1-y*g) ;
coeftayl(%,x=0,n) ;
coeftayl(%,y=0,c) ;
end proc:
seq(seq( A348869(n,c),c=1..n/2),n=2..10) ;
-
b[n_] := b[n] = If[n <= 3, 2^n, (3*(n+1)*b[n-1] + (n-4)*b[n-2] - 3*(n-1)*b[n-3])/(n+2)];
T[n_, c_] := Module[{g, x, y}, g = Sum[b[i]*x^(i+2), {i, 0, n}]; 1/(1-y*g) // SeriesCoefficient[#, {x, 0, n}]& // SeriesCoefficient[#, {y, 0, c}]&];
Table[T[n, c], {n, 2, 15}, {c, 1, n/2}] // Flatten (* Jean-François Alcover, Aug 12 2023, after Maple code *)
A086614
Triangle read by rows, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x)^2 + xy*f(x,y)^2.
Original entry on oeis.org
1, 2, 1, 3, 4, 2, 4, 10, 12, 5, 5, 20, 42, 40, 14, 6, 35, 112, 180, 140, 42, 7, 56, 252, 600, 770, 504, 132, 8, 84, 504, 1650, 3080, 3276, 1848, 429, 9, 120, 924, 3960, 10010, 15288, 13860, 6864, 1430, 10, 165, 1584, 8580, 28028, 57330, 73920, 58344, 25740
Offset: 0
Rows:
{1},
{2, 1},
{3, 4, 2},
{4, 10, 12, 5},
{5, 20, 42, 40, 14},
{6, 35, 112, 180, 140, 42},
{7, 56, 252, 600, 770, 504, 132},
{8, 84, 504, 1650, 3080, 3276, 1848, 429}, ...
-
T := (n,k) -> `if`(k=0, n+1, binomial(2*k, k-1)*binomial(n+k+1, n-k)/k):
for n from 0 to 8 do seq(T(n,k), k=0..n) od; # Peter Luschny, Jan 26 2018
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 7, 1, 1, 2, 6, 17, 11, 1, 1, 2, 6, 22, 41, 16, 1, 1, 2, 6, 22, 76, 86, 22, 1, 1, 2, 6, 22, 90, 226, 162, 29, 1, 1, 2, 6, 22, 90, 352, 582, 281, 37, 1
Offset: 0
First few rows of the triangle:
1;
1, 1;
1, 2, 1;
1, 2, 4, 1;
1, 2, 6, 7, 1;
1, 2, 6, 17, 11, 1;
1, 2, 6, 22, 41, 16, 1;
1, 2, 6, 22, 76, 86, 22, 1;
...
A364625
G.f. satisfies A(x) = 1/(1-x)^3 + x^2*A(x)^2.
Original entry on oeis.org
1, 3, 7, 16, 38, 95, 249, 678, 1901, 5451, 15906, 47066, 140868, 425657, 1296665, 3977684, 12276617, 38094013, 118768915, 371875752, 1168843808, 3686549845, 11664123048, 37011249678, 117750111763, 375529083267, 1200327617200, 3844662925222, 12338289374046
Offset: 0
A364622
G.f. satisfies A(x) = 1/(1-x)^2 + x^2*A(x)^4.
Original entry on oeis.org
1, 2, 4, 12, 45, 182, 779, 3480, 16005, 75234, 359893, 1746268, 8573477, 42511646, 212587561, 1070897000, 5429174465, 27679933778, 141829437174, 729972918876, 3772160853821, 19563615260102, 101797930474515, 531293155760840, 2780515192595481, 14588670579665882
Offset: 0
-
Table[Sum[Binomial[n + 4 k + 1, 6 k + 1]*Binomial[4 k, k]/(3 k + 1), {k, 0, Floor[n/2]}], {n, 0, 30}] (* Wesley Ivan Hurt, Jan 20 2024 *)
-
a(n) = sum(k=0, n\2, binomial(n+4*k+1, 6*k+1)*binomial(4*k, k)/(3*k+1));
A369691
G.f. satisfies A(x) = 1/(1-x)^3 + x^3*A(x)^3.
Original entry on oeis.org
1, 3, 6, 11, 24, 66, 196, 576, 1692, 5110, 15933, 50604, 161988, 521700, 1693362, 5541679, 18260055, 60487659, 201272437, 672550158, 2256204327, 7596059333, 25655943417, 86904524289, 295154911774, 1004906765178, 3429178160346, 11726499288028, 40178538608682
Offset: 0
-
a(n) = sum(k=0, n\3, binomial(n+3*k+2, n-3*k)*binomial(3*k, k)/(2*k+1));
A369693
G.f. satisfies A(x) = 1/(1-x)^4 + x^4*A(x)^4.
Original entry on oeis.org
1, 4, 10, 20, 36, 72, 220, 936, 4045, 15836, 56174, 187148, 616651, 2114448, 7717752, 29498000, 114243269, 437915876, 1650264874, 6149423732, 22909545269, 86129798600, 327872238092, 1260466647944, 4867739842821, 18801022899756, 72501445905366
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n+8*k+3, n-4*k)*binomial(4*k, k)/(3*k+1));
Comments