cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A182013 Triangle of partial sums of Motzkin numbers.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 8, 7, 6, 4, 17, 16, 15, 13, 9, 38, 37, 36, 34, 30, 21, 89, 88, 87, 85, 81, 72, 51, 216, 215, 214, 212, 208, 199, 178, 127, 539, 538, 537, 535, 531, 522, 501, 450, 323, 1374, 1373, 1372, 1370, 1366, 1357, 1336, 1285, 1158, 835, 3562, 3561
Offset: 0

Views

Author

Emanuele Munarini, Apr 06 2012

Keywords

Examples

			Triangle begins:
  1
  2,   1
  4,   3,   2
  8,   7,   6,   4
  17,  16,  15,  13,  9
  38,  37,  36,  34,  30,  21
  89,  88,  87,  85,  81,  72,  51
  216, 215, 214, 212, 208, 199, 178, 127
  539, 538, 537, 535, 531, 522, 501, 450, 323
		

Crossrefs

Diagonal elements = Motzkin numbers (A001006).
First column = partial sums of Motzkin numbers (A086615).
Row sums = A097861(n+1).
Diagonal sums = A182015.
Row square-sums = A182017.
Central coefficients = A182016.

Programs

  • Mathematica
    M[n_] := If[n==0, 1, Coefficient[(1+x+x^2)^(n+1), x^n]/(n+1)]; Flatten[Table[Sum[M[i], {i,k,n}], {n,0,30}, {k,0,n}]]
  • Maxima
    M(n):=coeff(expand((1+x+x^2)^(n+1)),x^n)/(n+1);
    create_list(sum(M(i),i,k,n),n,0,6,k,0,n);

Formula

T(n, k) = Sum_{i=k..n} M(i), where the M(n)'s are the Motzkin numbers.
Recurrence: T(n+1, k+1) = T(n, k) + M(n+1) - M(k).
G.f. (M(x) - y*M(x*y))/((1 - x)*(1 - y)), where M(x) is the generating series for Motzkin numbers.

A348869 Triangle T(n,c) counting Motzkin Paths of length n with c sections starting with an up-step at level 0.

Original entry on oeis.org

1, 2, 4, 1, 8, 4, 17, 12, 1, 38, 32, 6, 89, 82, 24, 1, 216, 208, 80, 8, 539, 530, 243, 40, 1, 1374, 1364, 702, 160, 10, 3562, 3551, 1975, 564, 60, 1, 9360, 9348, 5484, 1840, 280, 12, 24871, 24858, 15144, 5716, 1125, 84, 1, 66706, 66692, 41768, 17208, 4102, 448, 14
Offset: 2

Views

Author

R. J. Mathar, Nov 02 2021

Keywords

Comments

This is a Sequence Transform of A086615. A086615(n-2) counts the Motzkin Paths of length n which start with an u-step, return to the horizontal level once with a d-step and remain there (with any number of trailing h-steps). These might be called single-return M-Paths. The path of length n=2 is ud. The paths of length 3 are udh, uhd. The Paths of length 4 are uudd, udhh, uhdh and uhhd. A Motzkin Path can be chopped into subpaths of that type by splitting it at each u-step that starts from the horizontal line. [The exception is the path that consists entirely of h-steps.] The triangle of the Sequence Transform T(n,c) counts how many Motzkin Paths of length n which start with an u-step are concatenations of c of these single-return M-paths. T(n,1) are the single-return M-Paths. Row sums and column 1 are an INVERT transform pair.

Examples

			The triangle starts
      1
      2
      4     1
      8     4
     17    12     1
     38    32     6
     89    82    24     1
    216   208    80     8
    539   530   243    40    1
   1374  1364   702   160   10
   3562  3551  1975   564   60   1
   9360  9348  5484  1840  280  12
  24871 24858 15144  5716 1125  84  1
  66706 66692 41768 17208 4102 448 14
T(4,2)=1 counts udud.
T(5,1)=8 counts uuddh uudhd uuhdd udhhh uhudd uhdhh uhhdh uhhhd.
T(5,2)=4 counts ududh uduhd udhud uhdud.
T(2n,n) = 1 counts udududu... (ud repeated n times).
		

Crossrefs

Cf. A086615 (column c=1), A002026 (row sums)

Programs

  • Maple
    A348869 := proc(n,c)
        local g,x,y ;
        g := add( A086615(i)*x^(i+2),i=0..n) ;
        1/(1-y*g) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,c) ;
    end proc:
    seq(seq( A348869(n,c),c=1..n/2),n=2..10) ;
  • Mathematica
    b[n_] := b[n] = If[n <= 3, 2^n, (3*(n+1)*b[n-1] + (n-4)*b[n-2] - 3*(n-1)*b[n-3])/(n+2)];
    T[n_, c_] := Module[{g, x, y}, g = Sum[b[i]*x^(i+2), {i, 0, n}]; 1/(1-y*g) // SeriesCoefficient[#, {x, 0, n}]& // SeriesCoefficient[#, {y, 0, c}]&];
    Table[T[n, c], {n, 2, 15}, {c, 1, n/2}] // Flatten (* Jean-François Alcover, Aug 12 2023, after Maple code *)

Formula

G.f.: 1/(1-y*g086615(x)) where g086615(x) = x^2 +2*x^3 +4*x^4 +8*x^5 +17*x^6 +....

A086614 Triangle read by rows, where T(n,k) is the coefficient of x^n*y^k in f(x,y) that satisfies f(x,y) = 1/(1-x)^2 + xy*f(x,y)^2.

Original entry on oeis.org

1, 2, 1, 3, 4, 2, 4, 10, 12, 5, 5, 20, 42, 40, 14, 6, 35, 112, 180, 140, 42, 7, 56, 252, 600, 770, 504, 132, 8, 84, 504, 1650, 3080, 3276, 1848, 429, 9, 120, 924, 3960, 10010, 15288, 13860, 6864, 1430, 10, 165, 1584, 8580, 28028, 57330, 73920, 58344, 25740
Offset: 0

Views

Author

Paul D. Hanna, Jul 24 2003

Keywords

Examples

			Rows:
{1},
{2, 1},
{3, 4,    2},
{4, 10,  12,    5},
{5, 20,  42,   40,   14},
{6, 35, 112,  180,  140,   42},
{7, 56, 252,  600,  770,  504,  132},
{8, 84, 504, 1650, 3080, 3276, 1848, 429}, ...
		

Crossrefs

T(n,n) = A000108(n).
Cf. A086615 (antidiagonal sums), A086616 (row sums), A086617, A000292 (column 1), A277935 (column 2), A000580 (column 3 divided by 5), A000582 (column 4 divided by 14).

Programs

  • Maple
    T := (n,k) -> `if`(k=0, n+1, binomial(2*k, k-1)*binomial(n+k+1, n-k)/k):
    for n from 0 to 8 do seq(T(n,k), k=0..n) od; # Peter Luschny, Jan 26 2018

Formula

T(n,k) = binomial(2*k, k-1)*binomial(n+k+1, n-k) / k for k > 0. # Peter Luschny, Jan 26 2018

A136788 Triangle read by rows: A000012 * A107131.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 6, 7, 1, 1, 2, 6, 17, 11, 1, 1, 2, 6, 22, 41, 16, 1, 1, 2, 6, 22, 76, 86, 22, 1, 1, 2, 6, 22, 90, 226, 162, 29, 1, 1, 2, 6, 22, 90, 352, 582, 281, 37, 1
Offset: 0

Views

Author

Gary W. Adamson, Jan 21 2008

Keywords

Comments

Row sums = A086615: (1, 2, 4, 8, 17, 38, ...).

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2, 1;
  1, 2, 4,  1;
  1, 2, 6,  7,  1;
  1, 2, 6, 17, 11,  1;
  1, 2, 6, 22, 41, 16,  1;
  1, 2, 6, 22, 76, 86, 22, 1;
  ...
		

Crossrefs

Formula

A000012 * A107131 as infinite lower triangular matrices.

A364625 G.f. satisfies A(x) = 1/(1-x)^3 + x^2*A(x)^2.

Original entry on oeis.org

1, 3, 7, 16, 38, 95, 249, 678, 1901, 5451, 15906, 47066, 140868, 425657, 1296665, 3977684, 12276617, 38094013, 118768915, 371875752, 1168843808, 3686549845, 11664123048, 37011249678, 117750111763, 375529083267, 1200327617200, 3844662925222, 12338289374046
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(2/((1-x)^3*(1+sqrt(1-4*x^2/(1-x)^3))))

Formula

G.f.: A(x) = 2 / ( (1-x)^3 * (1 + sqrt( 1 - 4*x^2/(1-x)^3 )) ).
a(n) = Sum_{k=0..floor(n/2)} binomial(n+k+2,3*k+2) * binomial(2*k,k) / (k+1).

A364622 G.f. satisfies A(x) = 1/(1-x)^2 + x^2*A(x)^4.

Original entry on oeis.org

1, 2, 4, 12, 45, 182, 779, 3480, 16005, 75234, 359893, 1746268, 8573477, 42511646, 212587561, 1070897000, 5429174465, 27679933778, 141829437174, 729972918876, 3772160853821, 19563615260102, 101797930474515, 531293155760840, 2780515192595481, 14588670579665882
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + 4 k + 1, 6 k + 1]*Binomial[4 k, k]/(3 k + 1), {k, 0, Floor[n/2]}], {n, 0, 30}] (* Wesley Ivan Hurt, Jan 20 2024 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n+4*k+1, 6*k+1)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+4*k+1,6*k+1) * binomial(4*k,k) / (3*k+1).

A369691 G.f. satisfies A(x) = 1/(1-x)^3 + x^3*A(x)^3.

Original entry on oeis.org

1, 3, 6, 11, 24, 66, 196, 576, 1692, 5110, 15933, 50604, 161988, 521700, 1693362, 5541679, 18260055, 60487659, 201272437, 672550158, 2256204327, 7596059333, 25655943417, 86904524289, 295154911774, 1004906765178, 3429178160346, 11726499288028, 40178538608682
Offset: 0

Views

Author

Seiichi Manyama, Jan 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n+3*k+2, n-3*k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n+3*k+2,n-3*k) * binomial(3*k,k) / (2*k+1).

A369693 G.f. satisfies A(x) = 1/(1-x)^4 + x^4*A(x)^4.

Original entry on oeis.org

1, 4, 10, 20, 36, 72, 220, 936, 4045, 15836, 56174, 187148, 616651, 2114448, 7717752, 29498000, 114243269, 437915876, 1650264874, 6149423732, 22909545269, 86129798600, 327872238092, 1260466647944, 4867739842821, 18801022899756, 72501445905366
Offset: 0

Views

Author

Seiichi Manyama, Jan 29 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n+8*k+3, n-4*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n+8*k+3,n-4*k) * binomial(4*k,k) / (3*k+1).
Previous Showing 11-18 of 18 results.