cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 37 results. Next

A086024 a(n) = Sum_{i=1..n} C(i+3,4)^3.

Original entry on oeis.org

1, 126, 3501, 46376, 389376, 2389752, 11650752, 47587752, 168875127, 534401002, 1537404003, 4080706128, 10109274128, 23590546128, 52243162128, 110473767504, 224205418629, 438589465254, 830009446129, 1524339072504, 2724140666880, 4748425291880, 8089787666880
Offset: 1

Views

Author

André F. Labossière, Jul 11 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n/69189120)*(13824 + 960960*n^2 + 5885880*n^3 + 14370356*n^4 + 19269250*n^5 + 15996695*n^6 + 8678670*n^7 + 3138135*n^8 + 750750*n^9 + 114205*n^10 + 10010*n^11 + 385*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[(n/69189120)*(13824 + 960960*n^2 + 5885880*n^3 + 14370356*n^4 + 19269250*n^5 + 15996695*n^6 + 8678670*n^7 + 3138135*n^8 + 750750*n^9 + 114205*n^10 + 10010*n^11 + 385*n^12), {n,1,30}] (* G. C. Greubel, Nov 22 2017 *)
    LinearRecurrence[{14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,126,3501,46376,389376,2389752,11650752,47587752,168875127,534401002,1537404003,4080706128,10109274128,23590546128},30] (* Harvey P. Dale, Feb 18 2024 *)
  • PARI
    for(n=1,30, print1(sum(k=1,n, binomial(k+3, 4)^3), ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

a(n) = ( C(n+4, 5)/1001 )*( 1001 +20020*C(n-1, 1) +125840*C(n-1, 2) +390390*C(n-1, 3) +695695*C(n-1, 4) +750750*C(n-1, 5) +486850*C(n-1, 6) +175175*C(n-1, 7) +26950*C(n-1, 8) ).
G.f.: x*(1 +112*x +1828*x^2 +8464*x^3 +13840*x^4 +8464*x^5 +1828*x^6 +112*x^7 +x^8)/(x-1)^14 . - R. J. Mathar, Dec 22 2013
-(n-1)^3*a(n) +2*(n+1)*(n^2+2*n+13)*a(n-1) -(n+3)^3*a(n-2)=0. - R. J. Mathar, Dec 22 2013
a(n) = (n/69189120)*(13824 + 960960*n^2 + 5885880*n^3 + 14370356*n^4 + 19269250*n^5 + 15996695*n^6 + 8678670*n^7 + 3138135*n^8 + 750750*n^9 + 114205*n^10 + 10010*n^11 + 385*n^12). - G. C. Greubel, Nov 22 2017

A086029 a(n) = Sum_{i=1..n} C(i+6,7)^2.

Original entry on oeis.org

1, 65, 1361, 15761, 124661, 751925, 3696581, 15475205, 56884430, 187758030, 565982734, 1578749710, 4117700254, 10127050654, 23648089054, 52733344990, 112835299639, 232623278455, 463695768455, 896396608455, 1684993889355, 3086944610955, 5522978819355
Offset: 1

Views

Author

André F. Labossière, Jul 11 2003

Keywords

Examples

			a(3) = C(10,8)*(-1*C(10,0) + 8*C(10,1) - 36*C(10,2) + 120*C(10,3) - 330*C(10,4) + 792*C(10,5) - 1716*C(10,6) + 3432*C(10,7))/6435 = 1361.
		

Crossrefs

Programs

  • Magma
    [(1/108972864000)*n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7+n)*(7 + 2*n)*(60 + 64974*n + 126245*n^2 + 82467*n^3 + 23408*n^4 + 3003*n^5 + 143*n^6): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Maple
    A086029:=n->add(binomial(i+6, 7)^2, i=1..n); seq(A086029(n), n=1..30); # Wesley Ivan Hurt, Dec 22 2013
  • Mathematica
    Table[Sum[Binomial[i + 6, 7]^2, {i, n}], {n, 30}] (* Wesley Ivan Hurt, Dec 22 2013 *)
    LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{1,65,1361,15761,124661,751925, 3696581, 15475205, 56884430,187758030,565982734,1578749710,4117700254, 10127050654,23648089054,52733344990},40] (* Harvey P. Dale, Apr 25 2016 *)
  • PARI
    a(n) = sum(i=1, n, binomial(i+6, 7)^2); \\ Michel Marcus, Dec 22 2013
    
  • PARI
    Vec(x*(x+1)*(x^6+48*x^5+393*x^4+832*x^3+393*x^2+48*x+1)/(x-1)^16 + O(x^100)) \\ Colin Barker, May 02 2014
    

Formula

a(n) = C(n+7,8)*(-C(n+7,0) + 8*C(n+7,1) - 36*C(n+7,2) + 120*C(n+3,7) - 330*C(n+7,4) + 792*C(n+7,5) - 1716*C(n+7,6) + 3432*C(n+7,7))/6435. - Yahia Kahloune, Dec 22 2013
(n-1)^2*a(n) +(-2*n^2-10*n-37)*a(n-1) +(n+6)^2*a(n-2)=0. - R. J. Mathar, Dec 22 2013
G.f.: x*(x+1)*(x^6 +48*x^5 +393*x^4 +832*x^3 +393*x^2 +48*x +1)/(1-x)^16. - Colin Barker, May 02 2014
a(n) = (1/108972864000)*n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7+n)*(7 + 2*n)*(60 + 64974*n + 126245*n^2 + 82467*n^3 + 23408*n^4 + 3003*n^5 + 143*n^6). - G. C. Greubel, Nov 22 2017

Extensions

More terms from Michel Marcus, Dec 22 2013

A086021 a(n) = Sum_{i=1..n} C(i+2,3)^3.

Original entry on oeis.org

1, 65, 1065, 9065, 51940, 227556, 820260, 2548260, 7040385, 17688385, 41082041, 89310585, 183506960, 359122960, 673554960, 1216893456, 2126746665, 3608290665, 5960927665, 9613191665, 15167828676, 23459298500, 35626298500, 53202298500, 78227501625, 113386110201
Offset: 1

Views

Author

André F. Labossière, Jul 11 2003

Keywords

Crossrefs

Programs

  • Magma
    [n^2*(-36 + 300*n + 1535*n^2 + 2700*n^3 + 2442*n^4 + 1260*n^5 + 375*n^6 + 60*n^7 + 4*n^8)/8640: n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[n^2*(-36 + 300*n + 1535*n^2 + 2700*n^3 + 2442*n^4 + 1260*n^5 + 375*n^6 + 60*n^7 + 4*n^8)/8640, {n, 1, 30}] (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    Vec(-x*(x^6+54*x^5+405*x^4+760*x^3+405*x^2+54*x+1)/(x-1)^11 + O(x^100)) \\ Colin Barker, May 02 2014
    
  • PARI
    for(n=1,30, print1(n^2*(-36 + 300*n + 1535*n^2 + 2700*n^3 + 2442*n^4 + 1260*n^5 + 375*n^6 + 60*n^7 + 4*n^8)/8640, ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

a(n) = (C(n+3, 4)/1)*(1 +12*C(n-1, 1) +46*C(n-1, 2) +84*C(n-1, 3) +81*C(n-1, 4) +40*C(n-1, 5) +8*C(n-1, 6)). - Edited by Colin Barker, May 02 2014
G.f.: -x*(x^6 +54*x^5 +405*x^4 +760*x^3 +405*x^2 +54*x +1) / (x-1)^11. - Colin Barker, May 02 2014
a(n) = n^2*(-36 + 300*n + 1535*n^2 + 2700*n^3 + 2442*n^4 + 1260*n^5 + 375*n^6 + 60*n^7 + 4*n^8)/8640. - G. C. Greubel, Nov 22 2017

A086026 a(n) = Sum_{i=1..n} C(i+4,5)^3.

Original entry on oeis.org

1, 217, 9478, 185094, 2185470, 18188478, 116799606, 613592694, 2745339597, 10769363605, 37850444632, 121189368664, 358136205336, 987118431768, 2559344776920, 6286103520984, 14712254089533, 32974344717237, 71073599975686, 147860902015750, 297836101312750
Offset: 1

Views

Author

André F. Labossière, Jul 11 2003

Keywords

Examples

			a(3) = C(8,6)^2*(1 + 279*C(3,1) + 681*C(3,2) + 504*C(3,3))/280 = 9478. - _Yahia Kahloune_, Dec 22 2013
		

Crossrefs

Programs

  • Magma
    [(n^2/580608000)*(57600 + 4583040*n + 28668304*n^2 + 80791200*n^3 + 133134680*n^4 + 142979760*n^5 + 105929613*n^6 + 55881000*n^7 + 21323540* n^8 + 5904360*n^9 + 1175062*n^10 + 163800*n^11 + 15180*n^12 + 840*n^13 + 21*n^14): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Maple
    A086026 := proc(n)
        add( binomial(i+4,5)^3,i=1..n) ;
    end proc:
    seq(A086026(n),n=1..30) ; # R. J. Mathar, Dec 22 2013
  • Mathematica
    Table[Sum[Binomial[i + 4, 5]^3, {i, n}], {n, 30}] (* Wesley Ivan Hurt, Dec 22 2013 *)
  • PARI
    a(n) = sum(i=1, n, binomial(i+4, 5)^3); \\ Michel Marcus, Dec 22 2013
    

Formula

a(n) = C(n+5,6)^2*(1 + 279*C(n,1) + 681*C(n,2) + 504*C(n,3) + 126*C(n,4) )/280. - Yahia Kahloune, Dec 22 2013
-(n-1)^3*a(n) +(2*n+3)*(n^2+3*n+21)*a(n-1) -(n+4)^3*a(n-2)=0. - R. J. Mathar, Dec 22 2013
G.f.: -x*(x^10 +200*x^9 +5925*x^8 +52800*x^7 +182700*x^6 +273504*x^5 +182700*x^4 +52800*x^3 +5925*x^2 +200*x +1) / (x -1)^17. - Colin Barker, May 02 2014
a(n) = (n^2/580608000)*(57600 + 4583040*n + 28668304*n^2 + 80791200*n^3 + 133134680*n^4 + 142979760*n^5 + 105929613*n^6 + 55881000*n^7 + 21323540* n^8 + 5904360*n^9 + 1175062*n^10 + 163800*n^11 + 15180*n^12 + 840*n^13 + 21*n^14). - G. C. Greubel, Nov 22 2017

Extensions

More terms from Michel Marcus, Dec 22 2013

A086027 a(n) = Sum_{i=1..n} binomial(i+5,6)^2.

Original entry on oeis.org

1, 50, 834, 7890, 51990, 265434, 1119210, 4063866, 13081875, 38131900, 102259964, 255425340, 600047436, 1336192860, 2838530460, 5783112156, 11350211925, 21540508734, 39656591950, 71021001950, 124026854850, 211648774950, 353581802550, 579225802950, 931794553575
Offset: 1

Views

Author

André F. Labossière, Jul 11 2003

Keywords

Crossrefs

Programs

  • GAP
    List([1..30], n-> Sum([1..n], j-> Binomial(j+5,6)^2)); # G. C. Greubel, Aug 27 2019
  • Magma
    [n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(77*n^6 +1386*n^5 +9380*n^4 + 29400*n^3 +41783*n^2 +20874*n +60)/518918400: n in [1..30]]; // G. C. Greubel, Nov 22 2017
    
  • Maple
    A086027:=n->sum(binomial(i+5,6)^2, i=1..n); seq(A086027(k), k=1..50); # Wesley Ivan Hurt, Oct 24 2013
  • Mathematica
    Table[Sum[Binomial[k + 5, 6]^2, {k, 1, n}], {n, 50}] (* Wesley Ivan Hurt, Oct 24 2013 *)
  • PARI
    vector(30, n, sum(i=1,n, binomial(i+5,6)^2) ) \\ G. C. Greubel, Nov 22 2017
    
  • Sage
    [sum(binomial(j+5,6)^2 for j in (1..n)) for n in (1..30)] # G. C. Greubel, Aug 27 2019
    

Formula

From R. J. Mathar, Jun 16 2010: (Start)
G.f.: x*(1 + 36*x + 225*x^2 + 400*x^3 + 225*x^4 + 36*x^5 + x^6)/(1-x)^14.
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(77*n^6 + 1386*n^5 + 9380*n^4 + 29400*n^3 + 41783*n^2 + 20874*n + 60)/518918400. (End)

Extensions

More terms from R. J. Mathar, Jun 16 2010

A086028 a(n) = Sum_{i=1..n} C(i+5,6)^3.

Original entry on oeis.org

1, 344, 22296, 615000, 9876000, 108487128, 897376152, 5950405848, 33031486875, 158406862000, 671944398512, 2567519091888, 8965083682032, 28938181326000, 87168786702000, 246953567853744, 662331582918141, 1691011474896264, 4129363811437000, 9684000822437000
Offset: 1

Views

Author

André F. Labossière, Jul 11 2003

Keywords

Examples

			a(4) = Sum_{i=1..4} C(i+5,6)^3 = C(6,6)^3 + C(7,6)^3 + C(8,6)^3 + C(9,6)^3 = 1^3 + 7^3 + 28^3 + 84^3 = 615000.
		

Crossrefs

Programs

  • Magma
    [(n/120679663104000)*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-864000 + 2116800*n + 772737840*n^2 + 3398930472*n^3 + 6406454992 *n^4 + 6701566410*n^5 + 4302755765*n^6 + 1780394616*n^7 + 484074591*n^8 + 85975890*n^9 + 9604595*n^10 + 612612*n^11 + 17017*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Maple
    A086028 := proc(n)
        add( binomial(i+5,6)^3,i=1..n) ;
    end proc:
    seq(A086028(n),n=1..30) ; # R. J. Mathar, Dec 22 2013
  • Mathematica
    Table[Sum[Binomial[k+5,6]^3, {k,1,n}], {n,1,30}] (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    for(n=1, 30, print1(sum(k=1,n, binomial(k+5,6)^3), ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

-(n-1)^3*a(n) +2*(n+2)*(n^2 +4*n +31)*a(n-1) -(n+5)^3*a(n-2)=0. - R. J. Mathar, Dec 22 2013
From Yahia Kahloune, Dec 23 2013; (Start)
a(n) = C(n+6,7)*(-15*F6(n) + 63063*(7*C(n+11,12) + 195*C(n+10,12) + 920*C(n+9,12) + 920*C(n+8,12) + 195*C(n+7,12) + 7*C(n+6,12)))/415701;
where F6(n) = Sum_{i=0..6} (-1)^i*C(6+i,i)*C(n+6,i) = C(6,0)*C(n+6,0) - C(7,1)*C(n+6,1) + C(8,2)*C(n+6,2) - C(9,3)*C(n+6,3) + C(10,4)*C(n+6,4) - C(11,5)*C(n+6,5) + C(12,6)*C(n+6,6).
The values of F6(n), (n=0...9) are: 1, 1716, 10725, 39754, 112827, 270348, 575107, 1119210, 2031933, 3488500, .... (End)
G.f.: x*(x^12 +324*x^11 +15606*x^10 +233300*x^9 +1424925*x^8 +4050864*x^7 +5703096*x^6 +4050864*x^5 +1424925*x^4 +233300*x^3 +15606*x^2 +324*x +1) / (x -1)^20. - Colin Barker, May 02 2014
a(n) = (n/120679663104000)*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(-864000 + 2116800*n + 772737840*n^2 + 3398930472*n^3 + 6406454992 *n^4 + 6701566410*n^5 + 4302755765*n^6 + 1780394616*n^7 + 484074591*n^8 + 85975890*n^9 + 9604595*n^10 + 612612*n^11 + 17017*n^12). - G. C. Greubel, Nov 22 2017

Extensions

More terms from Colin Barker, May 02 2014

A085439 a(n) = Sum_{i=1..n} binomial(i+1,2)^4.

Original entry on oeis.org

1, 82, 1378, 11378, 62003, 256484, 871140, 2550756, 6651381, 15802006, 34776742, 71791798, 140366759, 261917384, 469277384, 811379400, 1359360681, 2214396762, 3517606762, 5462416762, 8309813083, 12406965164, 18209748140, 26309748140, 37466388765, 52644875166
Offset: 1

Views

Author

André F. Labossière, Jul 03 2003

Keywords

Examples

			a(15) = (2520*(15^9) +22680*(15^8) +79920*(15^7) +136080*(15^6) +107352*(15^5) +22680*(15^4) -10080*(15^3) +1728*15)/9! = 469277384.
		

Crossrefs

Programs

  • Magma
    [(2520*n^9 +22680*n^8 +79920*n^7 +136080*n^6 +107352*n^5 +22680*n^4 -10080*n^3 +1728*n)/Factorial(9): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[(2520*(n^9) + 22680*(n^8) + 79920*(n^7) + 136080*(n^6) + 107352*(n^5) + 22680*(n^4) - 10080*(n^3) + 1728*n)/9!, {n, 1, 50}] (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    Vec(x*(x^6+72*x^5+603*x^4+1168*x^3+603*x^2+72*x+1)/(x-1)^10 + O(x^100)) \\ Colin Barker, May 02 2014
    
  • PARI
    a(n) = sum(i=1, n, binomial(i+1, 2)^4); \\ Michel Marcus, Nov 22 2017
    

Formula

a(n) = (2520*n^9 +22680*n^8 +79920*n^7 +136080*n^6 +107352*n^5 +22680*n^4 -10080*n^3 +1728*n)/9!.
G.f.: x*(x^6+72*x^5+603*x^4+1168*x^3+603*x^2+72*x+1) / (x-1)^10. - Colin Barker, May 02 2014

Extensions

More terms from Colin Barker, May 02 2014
Typo in example fixed by Colin Barker, May 02 2014

A085440 a(n) = Sum_{i=1..n} binomial(i+1,2)^5.

Original entry on oeis.org

1, 244, 8020, 108020, 867395, 4951496, 22161864, 82628040, 267156165, 770440540, 2022773116, 4909947484, 11150268935, 23913084560, 48796284560, 95322158736, 179163294729, 325374464580, 572984364580, 981394464580, 1639143014731, 2675722491224, 4277290592600
Offset: 1

Views

Author

André F. Labossière, Jun 30 2003

Keywords

References

  • Elisabeth Busser and Gilles Cohen, Neuro-Logies - "Chercher, jouer, trouver", La Recherche, April 1999, No. 319, page 97.

Crossrefs

Programs

  • Magma
    [(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n )/Factorial(11): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[(113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n)/11!, {n,1,50}] (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^5), ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

a(n) = (113400*n^11 +1247400*n^10 +5544000*n^9 +12474000*n^8 +14196600*n^7 +6237000*n^6 -831600*n^5 +1108800*n^3 -172800*n)/11!.
G.f.: x*(x^8+232*x^7+5158*x^6+27664*x^5+47290*x^4+27664*x^3+5158*x^2+232*x+1) / (x-1)^12. - Colin Barker, May 02 2014

Extensions

Formula edited by Colin Barker, May 02 2014

A085441 a(n) = Sum_{i=1..n} binomial(i+1,2)^6.

Original entry on oeis.org

1, 730, 47386, 1047386, 12438011, 98204132, 580094436, 2756876772, 11060642397, 38741283022, 121395233038, 346594833742, 914464085783, 2254559726408, 5240543726408, 11568062614344, 24395756421273, 49397866465794, 96443747465794, 182209868465794
Offset: 1

Views

Author

André F. Labossière, Jul 07 2003

Keywords

Examples

			a(5) = C(7,3)*[191*106 + 450*(18*C(14,10) + 3851*C(13,10) + 61839*C(12,10) + 225352*C(11,10) + 225352*C(10,10))]/10010 = 12438011.
		

Crossrefs

Programs

  • Magma
    [(n/960960)*(6112 - 40040*n^2 + 78078*n^4 + 15015*n^5 + 19305*n^6 + 225225*n^7 + 335335*n^8 + 225225*n^9 + 80535*n^10 + 15015*n^11 + 1155*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Maple
    f:= sum(binomial(1+i,2)^6,i=1..n):
    seq(f, n=1..30); # Robert Israel, Nov 22 2017
  • Mathematica
    Table[Sum[Binomial[i+1,2]^6,{i,n}],{n,20}] (* or *) LinearRecurrence[ {14,-91,364,-1001,2002,-3003,3432,-3003,2002,-1001,364,-91,14,-1},{1,730,47386,1047386,12438011, 98204132,580094436, 2756876772,11060642397, 38741283022,121395233038, 346594833742, 914464085783, 2254559726408},20] (* Harvey P. Dale, Jun 05 2017 *)
  • PARI
    for(n=1,30, print1(sum(k=1,n, binomial(k+1,2)^6), ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

G.f.: x*(x^10 +716*x^9 +37257*x^8 +450048*x^7 +1822014*x^6 +2864328*x^5 +1822014*x^4 +450048*x^3 +37257*x^2 +716*x +1) / (x -1)^14. - Colin Barker, May 02 2014
a(n) = (n/960960)*(6112 - 40040*n^2 + 78078*n^4 + 15015*n^5 + 19305*n^6 + 225225*n^7 + 335335*n^8 + 225225*n^9 + 80535*n^10 + 15015*n^11 + 1155*n^12). - G. C. Greubel, Nov 22 2017

A086022 a(n) = Sum_{i=1..n} C(i+2,3)^4.

Original entry on oeis.org

1, 257, 10257, 170257, 1670882, 11505378, 61292514, 268652514, 1009853139, 3352413139, 10042998755, 27598188771, 70457539396, 168802499396, 382616259396, 825980472132, 1707628231653, 3396588391653, 6525595601653, 12150082161653, 21987344308134, 38769279231910
Offset: 1

Views

Author

André F. Labossière, Jul 11 2003

Keywords

Examples

			a(8) = C(11,4)*[-41*2793 + 350*(47*C(16,9) + 1749*C(15,9) + 9292*C(14,9) + 9292*C(13,9) + 1749*C(12,9) + 47*C(11,9))]/15015 = 268652514 .
		

Crossrefs

Programs

  • Magma
    [(n/12972960)*(-8856 +60060*n^2 +165165*n^3 +841841*n^4 +2462460*n^5 +3709420*n^6 +3243240*n^7 +1756755*n^8 +600600*n^9 +126490*n^10 +15015*n^11 +770*n^12): n in [1..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Accumulate[Binomial[Range[3,30],3]^4] (* Harvey P. Dale, Oct 09 2016 *)
  • PARI
    for(n=1,30, print1((n/12972960)*(-8856 + 60060*n^2 + 165165*n^3 + 841841*n^4 + 2462460*n^5 + 3709420*n^6 + 3243240*n^7 + 1756755*n^8 + 600600*n^9 + 126490*n^10 + 15015*n^11 + 770*n^12), ", ")) \\ G. C. Greubel, Nov 22 2017
    

Formula

G.f.: x*(1+x)*(x^8 +242*x^7 +6508*x^6 +43174*x^5 +84950*x^4 +43174*x^3 +6508*x^2 +242*x + 1) / (x-1)^14 . - R. J. Mathar, Dec 22 2013
(n-1)^4*a(n) +(-2*n^4 -4*n^3 -30*n^2 -28*n -17)*a(n-1) +(n+2)^4*a(n-2)=0. - R. J. Mathar, Dec 22 2013
a(n) = C(n+3,4)*[-41*F3(n) +350*(47*C(n+8,9) + 1749*C(n+7,9) + 9292*C(n+6,9) + 9292*C(n+5,9) + 1749*C(n+4,9) + 47*C(n+3,9))]/15015, where F3(n) = -C(3,0)*C(n+3,0) + C(4,1)*C(n+3,1) - C(5,2)*C(n+3,2) + C(6,3)*C(n+3,3). The value of F3(n), (n=0..8) is: 1, 35, 119, 273, 517, 871, 1355, 1989, 2793, ... - Yahia Kahloune, Dec 23 2013
a(n) = (n/12972960)*(-8856 + 60060*n^2 + 165165*n^3 + 841841*n^4 + 2462460*n^5 + 3709420*n^6 + 3243240*n^7 + 1756755*n^8 + 600600*n^9 + 126490*n^10 + 15015*n^11 + 770*n^12). - G. C. Greubel, Nov 22 2017
Previous Showing 11-20 of 37 results. Next