cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A117347 Near-multiperfects with primes excluded, abs(sigma(m) mod m) <= log(m).

Original entry on oeis.org

4, 6, 8, 10, 16, 20, 28, 32, 64, 70, 88, 104, 110, 120, 128, 136, 152, 256, 464, 496, 512, 592, 650, 672, 884, 1024, 1155, 1888, 1952, 2048, 2144, 4030, 4096, 5830, 8128, 8192, 8384, 8925, 11096, 16384, 17816, 18632, 18904, 30240, 32128, 32445, 32760, 32768
Offset: 1

Views

Author

Walter Nissen, Mar 09 2006

Keywords

Comments

Sequences A117346 through A117350 are an attempt to improve on sequences A045768 through A045770, A077374, A087167, A087485 and A088007 through A088012 and related sequences (but not to replace them) by using a more significant definition of "near". E.g., is sigma(n) (where sigma is the sum-of-divisors function) really "near" a multiple of n, for n = 9? Or n = 18?

Examples

			70 is a term because sigma(70) = 144 = 2 * 70 + 4, while 4 < log(70) ~= 4.248.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.

Crossrefs

Formula

sigma(m) = k * m + r, abs(r) <= log(m).

Extensions

Offset corrected by Amiram Eldar, Mar 05 2020

A275997 Numbers k whose deficiency is 64: 2k - sigma(k) = 64.

Original entry on oeis.org

134, 284, 410, 632, 1292, 1628, 4064, 9752, 12224, 22712, 66992, 72944, 403988, 556544, 2161664, 2330528, 8517632, 13228352, 14563832, 15422912, 20732792, 89472632, 134733824, 150511232, 283551872, 537903104, 731670272, 915473696, 1846850576, 2149548032, 2159587616
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) in this sequence can be used with any term y in A275996 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (A275996(2), a(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (A275996(7), a(11)) = (A063990(18), A063990(19)), where 66992 - 66928 = 64 is the deficiency of 66992 and the abundance of 66928.
Contains numbers 2^(k-1)*(2^k + 63) whenever 2^k + 63 is prime. - Max Alekseyev, Aug 27 2025

Examples

			a(1) = 134, since 2*134 - sigma(134) = 268 - 204 = 64.
		

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).

Programs

  • Mathematica
    Select[Range[10^7], 2 # - DivisorSigma[1, #] == 64 &] (* Michael De Vlieger, Jan 10 2017 *)
  • PARI
    isok(n) = 2*n - sigma(n) == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(23)-a(31) from Jinyuan Wang, Mar 02 2020

A292626 Numbers k whose abundance is 128: sigma(k) - 2*k = 128.

Original entry on oeis.org

860, 5336, 6536, 9656, 16256, 55796, 70864, 98048, 361556, 776096, 2227616, 4145216, 4498136, 4632896, 8124416, 13086016, 34869056, 38546576, 150094976, 172960856, 196066256, 962085536, 1080008576, 1733780336, 1844788112, 2143256576, 2531343872, 2986104064, 9677743616, 11276687456, 17104503968, 20680182272, 21568135616
Offset: 1

Views

Author

Fabian Schneider, Sep 20 2017

Keywords

Crossrefs

Subsequence of A259174.
Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64).

Programs

  • Mathematica
    fQ[n_] := DivisorSigma[1, n] == 2 n + 128; Select[ Range@ 10^8, fQ] (* Robert G. Wilson v, Nov 19 2017 *)
  • PARI
    isok(n) = sigma(n) - 2*n == 128; \\ Michel Marcus, Sep 20 2017

Extensions

a(9)-a(18) from Michel Marcus, Sep 20 2017
a(19)-a(24), a(26), a(29)-a(30), a(33) from Robert G. Wilson v, Nov 20 2017
Missing terms a(25), a(27)-a(28), a(31)-a(32) inserted and terms a(34) onward added by Max Alekseyev, Aug 30 2025

A117348 Near-multiperfects with primes and powers of 2 excluded, abs(sigma(m) mod m) <= log(m).

Original entry on oeis.org

6, 10, 20, 28, 70, 88, 104, 110, 120, 136, 152, 464, 496, 592, 650, 672, 884, 1155, 1888, 1952, 2144, 4030, 5830, 8128, 8384, 8925, 11096, 17816, 18632, 18904, 30240, 32128, 32445, 32760, 32896, 33664, 45356, 70564, 77744, 85936, 91388, 100804, 116624
Offset: 1

Views

Author

Walter Nissen, Mar 09 2006

Keywords

Comments

Sequences A117346 through A117350 are an attempt to improve on sequences A045768 through A045770, A077374, A087167, A087485 and A088007 through A088012 and related sequences (but not to replace them) by using a more significant definition of "near". E.g., is sigma(n) really "near" a multiple of n, for n = 9? Or n = 18? Sigma is the sum_of_divisors function.

Examples

			70 is a term because sigma(70) = 144 = 2 * 70 + 4, while 4 < log (70) ~= 4.248.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, B2.

Crossrefs

Formula

sigma(n) = k * n + r, abs(r) <= log(n).

Extensions

Offset corrected by Amiram Eldar, Mar 05 2020

A385255 Numbers m whose deficiency is 24: sigma(m) - 2*m = -24.

Original entry on oeis.org

124, 9664, 151115727458150838697984
Offset: 1

Views

Author

Max Alekseyev, Jul 29 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 23) for k in A057203. First three terms have this form.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A275702 (k=26).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26).
Cf. A057203.

A387352 Numbers m with deficiency 32: sigma(m) - 2*m = -32.

Original entry on oeis.org

250, 376, 1276, 12616, 20536, 396916, 801376, 1297312, 8452096, 33721216, 40575616, 59376256, 89397016, 99523456, 101556016, 150441856, 173706136, 269096704, 283417216, 500101936, 1082640256, 1846506832, 15531546112, 34675557856, 136310177392, 136783784608
Offset: 1

Views

Author

Max Alekseyev, Aug 27 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 31) for k in A247952.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).
Cf. A247952.

A301859 Abundant numbers whose abundance is a perfect number.

Original entry on oeis.org

48, 2002, 2632, 4540, 5170, 6952, 8925, 29056, 32445, 32980, 88330, 133042, 174856, 189472, 280228, 442365, 518368, 566752, 892552, 1266952, 2030368, 2052256, 2218450, 3959752, 4120672, 4558936, 5568448, 9071752, 15921112, 38551936, 65969536, 70114936, 88149352, 97364848
Offset: 1

Views

Author

Waldemar Puszkarz, Mar 27 2018

Keywords

Comments

There are 34 terms up to 10^8. The abundance of odd terms (only 3 terms) is 6 (see also A087167). The abundance of even terms is 28, 496, 8128, and 33550336 (for 97364848). There exist deficient numbers whose abundance is a perfect number in absolute terms, e.g., 7, 29, 62.

Examples

			48 is a term as it is abundant and its abundance, sigma(48)-2*48 = 28, is the second perfect number.
		

Crossrefs

Cf. A005101 (abundant numbers), A033880 (abundance), A000396 (perfect numbers), A087167, A088834, A088012, A077374 (sequences related to the odd terms of this sequence).

Programs

  • Mathematica
    Select[Range[10^8], PerfectNumberQ[DivisorSigma[1,# ]-2#]&]
  • PARI
    for(n=1,10^8, a=sigma(n)-2*n; a>0&&sigma(a)==2*a&&print1(n ","))
Previous Showing 11-17 of 17 results.