cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A243961 Decimal expansion of the expectation of the maximum of a size 8 sample from a normal (0,1) distribution.

Original entry on oeis.org

1, 4, 2, 3, 6, 0, 0, 3, 0, 6, 0, 4, 5, 2, 7, 7, 7, 5, 3, 0, 7, 8, 3, 2, 4, 6, 4, 9, 3, 0, 6, 2, 5, 7, 2, 5, 3, 0, 8, 6, 7, 2, 5, 2, 7, 0, 6, 9, 4, 8, 3, 1, 4, 3, 2, 2, 2, 5, 9, 1, 7, 5, 5, 4, 7, 8, 3, 5, 5, 5, 1, 2, 6, 8, 5, 2, 8, 1, 4, 2, 1, 6, 4, 2, 8, 9, 8, 8, 6, 5, 9, 7, 6, 9, 2, 7, 5, 5, 3, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 16 2014

Keywords

Comments

According to Steven Finch, no exact expression of this moment mu(8) is known, unlike the moments mu(n) for n<8.

Examples

			1.423600306045277753078324649306257253...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Cf. A087197 mu(2), A243446 mu(3), A243448 mu(4), A243453 mu(5), A243523 mu(6), A243524 mu(7).

Programs

  • Mathematica
    digits = 100; m0 = 5; dm = 5; f[x_] := 1/ Sqrt[2*Pi]*Exp[-x^2/2]; F[x_] := 1/2*Erf[x/Sqrt[2]] + 1/2; Clear[mu8]; mu8[m_] := mu8[m] = 8*NIntegrate[x*F[x]^7*f[x], {x , -m , m}, WorkingPrecision -> digits+5, MaxRecursion -> 20]; mu8[m0]; mu8[m = m0 + dm]; While[RealDigits[mu8[m]] != RealDigits[mu8[m - dm]], Print["m = ", m]; m = m + dm]; RealDigits[mu8[m], 10, digits] // First

Formula

integral_(-infinity..infinity) 8*x*F(x)^7*f(x) dx, where f(x) is the normal (0,1) density and F(x) its cumulative distribution.

A351401 Decimal expansion of erfi(1)/e, where erfi is the imaginary error function.

Original entry on oeis.org

6, 0, 7, 1, 5, 7, 7, 0, 5, 8, 4, 1, 3, 9, 3, 7, 2, 9, 1, 1, 5, 0, 3, 8, 2, 3, 5, 8, 0, 0, 7, 4, 4, 9, 2, 1, 1, 6, 1, 2, 2, 0, 9, 2, 8, 6, 6, 5, 1, 5, 6, 9, 1, 5, 9, 1, 6, 9, 4, 4, 1, 9, 1, 9, 2, 7, 2, 0, 8, 7, 6, 9, 4, 9, 2, 0, 2, 8, 1, 1, 8, 2, 0, 1, 6, 3, 9, 1, 3, 1, 6, 5, 2, 6, 3, 3, 2, 6, 8, 5, 4, 8, 1, 0, 4
Offset: 0

Views

Author

Amiram Eldar, Feb 10 2022

Keywords

Comments

The alternating sum of reciprocals of the factorials of the positive half-integers.

Examples

			0.60715770584139372911503823580074492116122092866515...
		

References

  • Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, and Sergei Rogosin, Mittag-Leffler Functions, Related Topics and Applications, New York, NY: Springer, 2020. See p. 94, eq. (4.12.9.6).
  • Constantin Milici, Gheorghe Drăgănescu, and J. Tenreiro Machado, Fractional Differential Equations, Introduction to Fractional Differential Equations, Springer, Cham, 2019. See p. 12, eq. (1.9).

Crossrefs

Programs

  • Maple
    evalf(exp(-1)*erfi(1), 120);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    RealDigits[Erfi[1]/E, 10, 100][[1]]
  • PARI
    real(-I*(1.0-erfc(I)))/exp(1) \\ Michel Marcus, Feb 10 2022

Formula

Equals Sum_{k>=0} (-1)^k/(k + 1/2)! = Sum_{k>=1} (-1)^(k+1)/Gamma(k + 1/2).
Equals E_{1, 3/2}(-1), where E_{a,b}(z) is the two-parameter Mittag-Leffler function.
Equals (-1/sqrt(Pi)) * Sum_{k>=1} (-2)^k/(2*k-1)!!.
Equals A068985 * A099288.

A119575 a(n) = binomial(2*n,n)*(n+3)^2/(n+1).

Original entry on oeis.org

9, 16, 50, 180, 686, 2688, 10692, 42900, 173030, 700128, 2838524, 11522056, 46802700, 190182400, 772913160, 3141129780, 12764118870, 51857916000, 210638666700, 855355383960, 3472419702180, 14092569803520, 57176602275000, 231908298827400, 940340123399196, 3811765978738368
Offset: 0

Views

Author

Zerinvary Lajos, May 31 2006

Keywords

Crossrefs

Programs

  • Maple
    [seq (binomial(2*n,n)*(n+3)^2/(n+1),n=0..25)];
  • Mathematica
    a[n_] := Binomial[2*n, n]*(n + 3)^2/(n + 1); Table[a[n], {n, 0, 25}] (* Robert P. P. McKone, Aug 25 2023 *)
  • PARI
    a(n) = binomial(2*n,n)/(n+1)*(n+3)^2 \\ Charles R Greathouse IV, Oct 23 2023

Formula

From Stefano Spezia, Aug 24 2023: (Start)
O.g.f.: (2*(sqrt(1 - 4*x) - 1) + x*(21 - 8*sqrt(1 - 4*x) - 50*x))/(x*(1 - 4*x)^(3/2)).
E.g.f.: exp(2*x)*((9 + 2*x)*BesselI(0, 2*x) + 2*(x - 2)*BesselI(1, 2*x)).
a(n) ~ c*4^n*sqrt(n), where c = A087197. (End)

Extensions

More terms from Stefano Spezia, Aug 24 2023

A289503 Decimal expansion of 3/sqrt(Pi).

Original entry on oeis.org

1, 6, 9, 2, 5, 6, 8, 7, 5, 0, 6, 4, 3, 2, 6, 8, 8, 6, 0, 8, 4, 4, 2, 3, 8, 3, 5, 4, 6, 8, 2, 3, 1, 7, 7, 5, 7, 5, 3, 2, 1, 5, 1, 8, 8, 7, 9, 8, 6, 9, 9, 6, 5, 7, 0, 5, 3, 2, 2, 5, 7, 1, 6, 5, 1, 3, 1, 9, 2, 7, 4, 0, 5, 3, 2, 4, 4, 8, 0, 2, 4, 3, 4, 6, 0, 2, 3, 0
Offset: 1

Views

Author

R. J. Mathar, Jul 07 2017

Keywords

Examples

			1.6925687506432688608442383546823177...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E10.

Crossrefs

Cf. A087197 (1/sqrt(Pi)).

Programs

  • Maple
    3/sqrt(Pi); evalf(%) ;
  • Mathematica
    First[RealDigits[3/Sqrt[Pi], 10, 100]] (* Paolo Xausa, Apr 29 2024 *)
  • PARI
    3/sqrt(Pi) \\ Charles R Greathouse IV, Oct 01 2022
  • Python
    from mpmath import mp, sqrt, pi
    mp.dps=90
    print([int(z) for z in list(str(3/sqrt(pi)).replace('.', '')[:-2])]) # Indranil Ghosh, Jul 08 2017
    

Formula

Equals 3*A087197.

A371859 Decimal expansion of Integral_{x=0..oo} 1 / sqrt(1 + x^5) dx.

Original entry on oeis.org

1, 5, 4, 9, 6, 9, 6, 2, 7, 7, 7, 4, 7, 3, 5, 3, 0, 2, 9, 5, 6, 2, 1, 9, 5, 3, 8, 3, 1, 7, 0, 8, 8, 2, 1, 2, 8, 9, 1, 9, 6, 9, 7, 5, 8, 2, 2, 0, 1, 1, 7, 1, 6, 5, 4, 0, 0, 9, 0, 5, 3, 6, 0, 9, 7, 7, 2, 7, 3, 1, 4, 7, 8, 0, 7, 1, 4, 9, 7, 9, 8, 2, 2, 6, 8, 7, 5, 2, 8, 3, 4, 0, 5, 3, 0, 6, 5, 7, 6, 9, 7, 1, 7, 6, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.54969627774735302956219538317088212891969758...
		

Crossrefs

Decimal expansions of Integral_{x=0..oo} 1 / sqrt(1 + x^k) dx: A118292 (k=3), A093341 (k=4), this sequence (k=5).

Programs

  • Mathematica
    RealDigits[Gamma[3/10] Gamma[6/5]/Sqrt[Pi], 10, 105][[1]]
    RealDigits[2^(2/5) * Gamma[1/5]^2 / (5*GoldenRatio*Gamma[2/5]), 10, 105][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)

Formula

Equals Gamma(3/10) * Gamma(6/5) / sqrt(Pi).
Equals 2^(2/5) * Gamma(1/5)^2 / (5 * phi * Gamma(2/5)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Apr 09 2024

A378942 Decimal expansion of (1/sqrt(Pi) + e*erfc(-1))/2.

Original entry on oeis.org

2, 7, 8, 6, 5, 8, 4, 8, 3, 2, 1, 5, 5, 0, 1, 9, 8, 7, 6, 6, 2, 8, 9, 5, 2, 0, 2, 4, 8, 8, 7, 7, 9, 1, 2, 0, 0, 2, 6, 9, 1, 9, 2, 6, 5, 6, 7, 8, 2, 3, 3, 2, 6, 7, 1, 5, 1, 6, 2, 4, 0, 6, 0, 3, 2, 0, 9, 1, 4, 5, 1, 5, 3, 6, 6, 4, 1, 7, 2, 6, 7, 9, 2, 1, 1, 2, 2, 9, 9, 6, 2, 2, 6, 6, 5, 2, 6, 8, 4, 2
Offset: 1

Views

Author

Stefano Spezia, Dec 11 2024

Keywords

Examples

			2.7865848321550198766289520248877912002691926567823...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 4.6, p. 262.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1/Sqrt[Pi]+E Erfc[-1])/2,10,100][[1]]

Formula

Equals (1 + e*sqrt(Pi)*(1 + erf(1)))/(2*sqrt(Pi)).
Equals A222392 / 2. - Amiram Eldar, Feb 15 2025
Previous Showing 21-26 of 26 results.