cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A379311 Number of prime indices of n that are 1 or prime.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 1, 3, 0, 1, 2, 4, 1, 3, 0, 3, 1, 2, 0, 4, 2, 1, 3, 2, 0, 3, 1, 5, 2, 2, 1, 4, 0, 1, 1, 4, 1, 2, 0, 3, 3, 1, 0, 5, 0, 3, 2, 2, 0, 4, 2, 3, 1, 1, 1, 4, 0, 2, 2, 6, 1, 3, 1, 3, 1, 2, 0, 5, 0, 1, 3, 2, 1, 2, 0, 5, 4, 2, 1, 3, 2, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 1.
The prime indices of 70 are {1,3,4}, so a(70) = 2.
The prime indices of 98 are {1,4,4}, so a(98) = 1.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 1.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 2.
		

Crossrefs

Positions of first appearances are A000079.
These "old" primes are listed by A008578.
Positions of zero are A320629, counted by A023895 (strict A204389).
Positions of one are A379312, counted by A379314 (strict A379315).
Positions of nonzero terms are A379313.
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A080339 is the characteristic function for the old prime numbers.
A376682 gives k-th differences of old prime numbers, see A030016, A075526, A173390, A376683, A376855.
Other counts of prime indices:
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],#==1||PrimeQ[#]&]],{n,100}]

Formula

Totally additive with a(prime(k)) = A080339(k).

A379307 Positive integers whose prime indices include no squarefree numbers.

Original entry on oeis.org

1, 7, 19, 23, 37, 49, 53, 61, 71, 89, 97, 103, 107, 131, 133, 151, 161, 173, 193, 197, 223, 227, 229, 239, 251, 259, 263, 281, 307, 311, 337, 343, 359, 361, 371, 379, 383, 409, 419, 427, 433, 437, 457, 463, 479, 497, 503, 521, 523, 529, 541, 569, 593, 613, 623
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
    1: {}
    7: {4}
   19: {8}
   23: {9}
   37: {12}
   49: {4,4}
   53: {16}
   61: {18}
   71: {20}
   89: {24}
   97: {25}
  103: {27}
  107: {28}
  131: {32}
  133: {4,8}
  151: {36}
  161: {4,9}
  173: {40}
		

Crossrefs

Partitions of this type are counted by A114374, strict A256012.
Positions of zero in A379306.
For a unique squarefree part we have A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Length[Select[prix[#],SquareFreeQ]]==0&]

A379310 Number of nonsquarefree prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 0.
The prime indices of 70 are {1,3,4}, so a(70) = 1.
The prime indices of 98 are {1,4,4}, so a(98) = 2.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 2.
		

Crossrefs

Positions of first appearances are A000420.
Positions of zero are A302478, counted by A073576 (strict A087188).
No squarefree parts: A379307, counted by A114374 (strict A256012).
One squarefree part: A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],Not@*SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A107078(k) = 1 - A008966(k).

A335904 Fully additive with a(2) = 0, and a(p) = 1+a(p-1)+a(p+1), for odd primes p.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 0, 2, 2, 4, 1, 4, 2, 3, 0, 3, 2, 5, 2, 3, 4, 6, 1, 4, 4, 3, 2, 6, 3, 4, 0, 5, 3, 4, 2, 8, 5, 5, 2, 6, 3, 8, 4, 4, 6, 8, 1, 4, 4, 4, 4, 8, 3, 6, 2, 6, 6, 10, 3, 8, 4, 4, 0, 6, 5, 9, 3, 7, 4, 7, 2, 11, 8, 5, 5, 6, 5, 8, 2, 4, 6, 10, 3, 5, 8, 7, 4, 9, 4, 6, 6, 5, 8, 7, 1, 6, 4, 6, 4, 9, 4, 9, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2020

Keywords

Crossrefs

Programs

  • PARI
    A335904(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A335904(f[k,1]-1)+A335904(f[k,1]+1)))); };

Formula

Totally additive with a(2) = 0, and for odd primes p, a(p) = 1 + a(p-1) + a(p+1).
a(n) = A336118(n) + A087436(n).
For all n >= 1, a(A335915(n)) = A336118(n).
For all n >= 1, a(n) >= A335884(n) >= A335881(n) >= A335875(n) >= A335885(n).
For all n >= 0, a(3^n) = n.

A379306 Number of squarefree prime indices of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 0, 3, 2, 2, 1, 3, 1, 1, 2, 4, 1, 3, 0, 3, 1, 2, 0, 4, 2, 2, 3, 2, 1, 3, 1, 5, 2, 2, 1, 4, 0, 1, 2, 4, 1, 2, 1, 3, 3, 1, 1, 5, 0, 3, 2, 3, 0, 4, 2, 3, 1, 2, 1, 4, 0, 2, 2, 6, 2, 3, 1, 3, 1, 2, 0, 5, 1, 1, 3, 2, 1, 3, 1, 5, 4, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 2.
The prime indices of 70 are {1,3,4}, so a(70) = 2.
The prime indices of 98 are {1,4,4}, so a(98) = 1.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 3.
		

Crossrefs

Positions of first appearances are A000079.
Positions of zero are A379307, counted by A114374 (strict A256012).
Positions of one are A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379310 nonsquarefree, see A302478.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A008966(k).

A379317 Positive integers with a unique even prime index.

Original entry on oeis.org

3, 6, 7, 12, 13, 14, 15, 19, 24, 26, 28, 29, 30, 33, 35, 37, 38, 43, 48, 51, 52, 53, 56, 58, 60, 61, 65, 66, 69, 70, 71, 74, 75, 76, 77, 79, 86, 89, 93, 95, 96, 101, 102, 104, 106, 107, 112, 113, 116, 119, 120, 122, 123, 130, 131, 132, 138, 139, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Dec 29 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
   3: {2}
   6: {1,2}
   7: {4}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  19: {8}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  37: {12}
  38: {1,8}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

Partitions of this type are counted by A038348 (strict A096911).
For all even parts we have A066207, counted by A035363 (strict A000700).
For no even parts we have A066208, counted by A000009 (strict A035457).
Positions of 1 in A257992.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Length[Select[prix[#],EvenQ]]==1&]

A249344 A(n,k) = exponent of the largest power of n-th prime which divides k, square array read by antidiagonals.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2014

Keywords

Comments

Square array A(n,k), where n = row, k = column, read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ... (transpose of array A060175).
A(n,k) is the (p_n)-adic valuation of k, where p_n is the n-th prime, A000040(n).
Each row is effectively a ruler function, s, with s(1) = 0. - Peter Munn, Apr 30 2022

Examples

			The top-left corner of the array:
  0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, ...
  0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, ...
  0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, ...
  0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, ...
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, ...
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ...
  ...
A(1,8) = 3, because 2^3 is the largest power of 2 (= p_1 = A000040(1)) that divides 8.
a(2,9) = 2, because 3^2 is the largest power of 3 (= p_2) that divides 9.
a(3,15) = 1, because 5^1 is the largest power of 5 (= p_3) that divides 15.
		

Crossrefs

Transpose: A060175.
Row 1: A007814.
Row 2: A007949.
Row 3: A112765.
Row 4: A214411.
Completely additive sequences where more than one prime is mapped to 1, all other primes to 0: A065339, A083025, A087436, A169611.
Ruler functions, s, with s(1) = 0 that are not rows here: A122840, A122841, A235127, A244413.

Programs

  • Mathematica
    A[n_, k_] := IntegerExponent[k, Prime[n]]; Table[A[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* Amiram Eldar, Oct 01 2023 *)
  • PARI
    a(n, k) = valuation(k, prime(n)); \\ Michel Marcus, Jun 24 2017
  • Python
    from sympy import prime
    def a(n, k):
        p=prime(n)
        i=z=0
        while p**i<=k:
            if k%(p**i)==0: z=i
            i+=1
        return z
    for n in range(1, 10): print([a(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Jun 24 2017
    
  • Scheme
    (define (A249344 n) (A249344bi (A002260 n) (A004736 n)))
    (define (A249344bi row col) (let ((p (A000040 row))) (let loop ((n col) (i 0)) (cond ((not (zero? (modulo n p))) i) (else (loop (/ n p) (+ i 1)))))))
    

Formula

Row n, as a sequence, is completely additive with A(n, prime(n)) = 1, A(n, prime(m)) = 0 for m <> n. - Peter Munn, Apr 30 2022
Sum_{k=1..m} A(n,k) ~ (1/(prime(n)-1)) * m. - Amiram Eldar, Oct 01 2023

A366848 Odd numbers whose odd prime indices are relatively prime.

Original entry on oeis.org

55, 85, 155, 165, 187, 205, 253, 255, 275, 295, 335, 341, 385, 391, 415, 425, 451, 465, 485, 495, 527, 545, 561, 595, 605, 615, 635, 649, 697, 713, 715, 737, 745, 759, 765, 775, 785, 799, 803, 825, 885, 895, 913, 935, 943, 955, 1003, 1005, 1023, 1025, 1045
Offset: 1

Views

Author

Gus Wiseman, Nov 01 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The odd prime indices of 345 are {3,9}, which are not relatively prime, so 345 is not in the sequence.
The odd prime indices of 825 are {3,3,5}, which are relatively prime, so 825 is in the sequence
The terms together with their prime indices begin:
    55: {3,5}
    85: {3,7}
   155: {3,11}
   165: {2,3,5}
   187: {5,7}
   205: {3,13}
   253: {5,9}
   255: {2,3,7}
   275: {3,3,5}
   295: {3,17}
   335: {3,19}
   341: {5,11}
   385: {3,4,5}
   391: {7,9}
   415: {3,23}
   425: {3,3,7}
   451: {5,13}
   465: {2,3,11}
   485: {3,25}
   495: {2,2,3,5}
		

Crossrefs

Including even terms and prime indices gives A289509, ones of A289508, counted by A000837.
Including even prime indices gives A302697, counted by A302698.
Including even terms gives A366846, counted by A366850.
For halved even instead of odd prime indices we have A366849.
A000041 counts integer partitions, strict A000009 (also into odds).
A066208 lists numbers with all odd prime indices, even A066207.
A112798 lists prime indices, length A001222, sum A056239.
A257991 counts odd prime indices, even A257992.
A366528 adds up odd prime indices, partition triangle A113685.
A366531 = 2*A366533 adds up even prime indices, triangle A113686/A174713.

Programs

  • Mathematica
    Select[Range[1000], OddQ[#]&&GCD@@Select[PrimePi/@First/@FactorInteger[#], OddQ]==1&]

A366846 Numbers whose odd prime indices are relatively prime.

Original entry on oeis.org

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 85, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122
Offset: 1

Views

Author

Gus Wiseman, Oct 29 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The odd prime indices of 115 are {3,9}, and these are not relatively prime, so 115 is not in the sequence.
The odd prime indices of 825 are {3,3,5}, and these are relatively prime, so 825 is in the sequence.
		

Crossrefs

Including even indices gives A289509, ones of A289508, counted by A000837.
The complement when including even indices is A318978, counted by A018783.
The nonzero complement ranks the partitions counted by A366842.
The version for halved even indices is A366847.
The odd case is A366848.
The partitions with these Heinz numbers are counted by A366850.
A000041 counts integer partitions, strict A000009 (also into odds).
A112798 lists prime indices, length A001222, sum A056239.
A257992 counts even prime indices, odd A257991.
A366528 adds up odd prime indices, partition triangle A113685.
A366531 = 2*A366533 adds up even prime indices, triangle A113686/A174713.

Programs

  • Mathematica
    Select[Range[100], GCD@@Select[PrimePi/@First/@FactorInteger[#], OddQ]==1&]

A036348 Even numbers whose number of odd prime factors is odd (when counted with multiplicity).

Original entry on oeis.org

6, 10, 12, 14, 20, 22, 24, 26, 28, 34, 38, 40, 44, 46, 48, 52, 54, 56, 58, 62, 68, 74, 76, 80, 82, 86, 88, 90, 92, 94, 96, 104, 106, 108, 112, 116, 118, 122, 124, 126, 134, 136, 142, 146, 148, 150, 152, 158, 160, 164, 166, 172, 176, 178, 180, 184, 188, 192, 194, 198, 202, 206, 208
Offset: 1

Views

Author

Patrick De Geest, Dec 15 1998

Keywords

Comments

Parity of 'even number' and its sum of prime factors differs (counted with multiplicity). - The original name of the sequence.
Even terms of A036347, and even terms of A335657. Term is listed if and only if it is the product of a term of A067019 and a power of 2 (term of A000079) larger than 1. Cf. also A036349. - Antti Karttunen, Jan 15 2023

Examples

			88 = 2 * 2 * 2 * 11 -> sum = 17; 88 is even while 17 is odd, so 88 is a term.
		

Crossrefs

Even terms in A036347 and in A335657.
Setwise difference A036347 \ A046337.
Setwise difference A335657 \ A067019.

Programs

  • Mathematica
    Select[2*Range[100],OddQ[Total[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[#]]]]&] (* Harvey P. Dale, Sep 22 2014 *)
  • PARI
    isA036348(n) = (!(n%2) && (bigomega(n>>valuation(n,2))%2)); \\ Antti Karttunen, Jan 15 2023

Formula

{k | k == 0 mod 2 and A087436(n) == 1 mod 2}. - Antti Karttunen, Jan 16 2023

Extensions

Offset corrected, name edited and more terms added by Antti Karttunen, Jan 15 2023
Previous Showing 21-30 of 42 results. Next