cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-46 of 46 results.

A362829 Positions in lexicographic order of odd partitions of sufficiently large numbers.

Original entry on oeis.org

1, 3, 7, 10, 15, 20, 27, 30, 39, 41, 51, 56, 69, 72, 75, 93, 95, 101, 123, 128, 132, 134, 160, 163, 166, 172, 176, 212, 214, 220, 227, 229, 273, 278, 282, 284, 291, 297, 353, 356, 359, 365, 369, 379, 382, 384, 453, 455, 461, 468, 470, 481, 483, 490, 579, 584
Offset: 1

Views

Author

Richard Peterson, Aug 01 2023

Keywords

Comments

a(n) is the position in lexicographic order of the n-th odd partition of a sufficiently large number k. As long as the number k whose partitions we are examining is large enough, a(n) will exist and won't change for different k. The number of partitions of an odd number, for example, 101 for k=13, will always appear in the sequence, since 13 is the 101st partition in lexicographic order.
Equivalently, positions of partitions with all parts odd among all partitions with no parts of size 1, ordered first by sum, then lexicographically (with the parts in nondecreasing order); or positions of partitions with all parts even among all partitions ordered first by the number of parts plus the sum of the parts, then lexicographically. - Pontus von Brömssen, Sep 14 2023

Examples

			a(1)=1 because 1+1+...+1 (k times) is the first partition in lexicographic order of any positive integer k, and it is odd.
a(2)=3 because 1+1+...+1(k-3 times)+3=k is the third partition of k lexicographically and it is odd.
		

Crossrefs

Extensions

More terms from Pontus von Brömssen, Sep 14 2023

A115604 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts in which the smallest part occurs k times (1<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 1, 2, 1, 1, 0, 1, 0, 0, 1, 2, 1, 2, 1, 0, 1, 0, 0, 1, 3, 2, 1, 1, 1, 0, 1, 0, 0, 1, 3, 3, 1, 1, 1, 1, 0, 1, 0, 0, 1, 4, 2, 2, 2, 1, 1, 1, 0, 1, 0, 0, 1, 5, 3, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 5, 4, 3, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1
Offset: 1

Views

Author

Emeric Deutsch, Mar 13 2006

Keywords

Comments

Row sums yield A000009. T(n,1)=A087897(n+2). Sum(k*T(n,k),k=1..n)=A092268(n).

Examples

			T(14,2)=4 because we have [9,3,1,1],[7,7],[7,5,1,1] and [3,3,3,3,1,1].
Triangle starts:
1;
0,1;
1,0,1;
1,0,0,1;
1,1,0,0,1;
1,1,1,0,0,1;
2,1,0,1,0,0,1;
		

Crossrefs

Programs

  • Maple
    g:=sum(t*x^(2*k-1)/(1-t*x^(2*k-1))/product(1-x^(2*i-1),i=k+1..40),k=1..40): gser:=simplify(series(g,x=0,55)): for n from 1 to 15 do P[n]:=expand(coeff(gser,x^n)) od: for n from 1 to 15 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form

Formula

G.f.=G(t,x)=sum(tx^(2k-1)/[(1-tx^(2k-1))product(1-x^(2i-1), i=k+1..infinity)], k=1..infinity).

A116663 Triangle read by rows: T(n,k) = number of partitions of n into odd parts and having exactly k parts equal to 1 (n>=0, 1<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 0, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Feb 22 2006

Keywords

Comments

Row sums yield A000009. T(n,0)=A087897(n). Column k has g.f.=x^k/Product(1-x^(2j-1), j=2..infinity) (all columns are basically identical). Sum(k*T(n,k),k=0..n)=A036469(n).

Examples

			T(10,1)=2 because the only partitions of 10 into odd parts and having exactly 1 part equal to 1 are [9,1] and [3,3,3,1].
Triangle starts:
1;
0,1;
0,0,1;
1,0,0,1;
0,1,0,0,1;
		

Crossrefs

Programs

  • Maple
    g:=1/(1-t*x)/product(1-x^(2*j-1),j=2..30): gser:=simplify(series(g,x=0,18)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(gser,x^n)) od: for n from 0 to 14 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form

Formula

G.f.=1/[(1-tx)*Product(1-x^(2j-1), j=2..infinity)].

A303902 Expansion of (1 - x^2)*Product_{k>=2} (1 + x^k)^k.

Original entry on oeis.org

1, 0, 1, 3, 3, 8, 12, 21, 34, 59, 93, 150, 242, 377, 595, 922, 1419, 2171, 3310, 4988, 7507, 11218, 16674, 24676, 36353, 53295, 77828, 113209, 163989, 236736, 340517, 488108, 697407, 993350, 1410455, 1996968, 2819280, 3969260, 5573541, 7806141, 10905640, 15199138, 21133212
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

First differences of A026007.

Crossrefs

Programs

  • Mathematica
    nmax = 42; CoefficientList[Series[(1 - x^2) Product[(1 + x^k)^k, {k, 2, nmax}], {x, 0, nmax}], x]
    nmax = 42; CoefficientList[Series[(1 - x) Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: (1 - x)*exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)).
a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * Zeta(3)^(1/2) / (2^(13/12) * sqrt(Pi) * n). - Vaclav Kotesovec, May 04 2018

A331980 Number of compositions (ordered partitions) of n into distinct odd parts > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 2, 1, 4, 1, 4, 7, 6, 7, 6, 13, 8, 19, 8, 25, 34, 31, 34, 43, 60, 49, 84, 61, 134, 73, 158, 205, 232, 217, 280, 355, 378, 487, 450, 745, 572, 1003, 668, 1381, 1558, 1759, 1678, 2383, 2592, 3001, 3480, 3865, 5162, 4729, 6794, 5953, 9964
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 03 2020

Keywords

Examples

			a(12) = 4 because we have [9, 3], [7, 5], [5, 7] and [3, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[k! x^(k (k + 2))/Product[(1 - x^(2 j)), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Sum_{k>=0} k! * x^(k*(k + 2)) / Product_{j=1..k} (1 - x^(2*j)).

A334377 Irregular triangle read by rows: T(n,k) is the number of partitions of k into distinct parts p such that 2 <= p <= n.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 3, 2, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 2, 3, 2, 2, 1, 1, 1, 0, 1
Offset: 2

Views

Author

Victor Mishnyakov, Elena Lanina, Apr 25 2020

Keywords

Examples

			Irregular triangle begins:
----------------------------------------------------------
n\k | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
----------------------------------------------------------
  2 | 1 0 1
  3 | 1 0 1 1 0 1
  4 | 1 0 1 1 1 1 1 1 0 1
  5 | 1 0 1 1 1 2 1 2 1 2  1  1  1  0  1
  6 | 1 0 1 1 1 2 2 2 2 3  2  3  2  2  2  2  1  1  1  0  1
  ...
For n = 4: T(4,3) = 1 because we have [3], G.f.=1+x^2+x^3+x^4+x^5+x^6+x^7+x^9;
For n = 5: T(5,5) = 2 because we have [5] and [3,2].
G.f. is 1+x^2+x^3+x^4+2x^5+x^6+2x^7+x^8+2x^9+x^10+x^11+x^12+x^14.
		

Crossrefs

Programs

  • Mathematica
    trow[n_] := CoefficientList[Product[(1 + x^i), {i, 2, n}], x]; nmax = 10; Table[trow[n], {n, 2, nmax}] // Flatten

Formula

G.f. for row n: Product_{i=2..n} (1+x^i), n >= 2.
Previous Showing 41-46 of 46 results.