A208239 Triangle read by rows: T(n,m) = n + k - n/k, where k is the m-th divisor of n; 1 <= m <= tau(n).
1, 1, 3, 1, 5, 1, 4, 7, 1, 9, 1, 5, 7, 11, 1, 13, 1, 6, 10, 15, 1, 9, 17, 1, 7, 13, 19, 1, 21, 1, 8, 11, 13, 16, 23, 1, 25, 1, 9, 19, 27, 1, 13, 17, 29, 1, 10, 16, 22, 31, 1, 33, 1, 11, 15, 21, 25, 35, 1, 37, 1, 12, 19, 21, 28, 39, 1, 17, 25, 41, 1, 13, 31, 43, 1, 45, 1, 14, 19, 22, 26
Offset: 1
Examples
Triangle begins: 1, 1, 3, 1, 5, 1, 4, 7, 1, 9, 1, 5, 7, 11, 1, 13, 1, 6, 10, 15, 1, 9, 17, 1, 7, 13, 19, 1, 21, 1, 8, 11, 13, 16, 23. In this last, 12th line (ending with 2*12-1), the first differences are (7,3,2,3,7).
Links
- Zak Seidov, Rows n = 1..200 of irregular triangle, flattened
Programs
-
Haskell
a208239 n k = a208239_row n !! k a208239_row n = map (+ n) $ zipWith (-) divs $ reverse divs where divs = a027750_row n a208239_tabl = map a208239_row [1..] -- Reinhard Zumkeller, Feb 25 2013
-
Mathematica
row[n_] := Table[n + k - n/k, {k, Divisors[n]}]; Table[row[n], {n, 1, 24}] // Flatten (* Jean-François Alcover, Jan 21 2013 *)
Formula
T(n,k) = n + A027750(n,k) + A027750(n,A000005(n)+1-k), 1<=k<=A000005(n). - Reinhard Zumkeller, Feb 25 2013
Comments