cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A208239 Triangle read by rows: T(n,m) = n + k - n/k, where k is the m-th divisor of n; 1 <= m <= tau(n).

Original entry on oeis.org

1, 1, 3, 1, 5, 1, 4, 7, 1, 9, 1, 5, 7, 11, 1, 13, 1, 6, 10, 15, 1, 9, 17, 1, 7, 13, 19, 1, 21, 1, 8, 11, 13, 16, 23, 1, 25, 1, 9, 19, 27, 1, 13, 17, 29, 1, 10, 16, 22, 31, 1, 33, 1, 11, 15, 21, 25, 35, 1, 37, 1, 12, 19, 21, 28, 39, 1, 17, 25, 41, 1, 13, 31, 43, 1, 45, 1, 14, 19, 22, 26
Offset: 1

Views

Author

Gerasimov Sergey, Jan 11 2013

Keywords

Comments

n-th row sum is equal to A038040(n) = d(n)*n, where d = A000005.
Numbers n such that n + k - n/k is noncomposite number for all divisors k of n: 1, 2, 3, 6, 7, 10, 15, 19, 22, 30, 31, 37, 42, 57, 70, 79, 87, 97,...
Numbers n such that n + k - n/k is nonprime number for all divisor k of n: 1, 5, 8, 11, 13, 17, 23, 25, 29, 32, 38, 41, 43, 47, 53, 56, 59, 61, 62, 67, 68, 71, 73, 80, 81, 83, 88, 89, 93, 98, 101, 103, 107, 109, 111, 113, 121, 123, 125, 127,...
Smallest m such that n = m + k - m/k for all k is divisor of n, or 0 if no such m exists : 1, 0, 2, 4, 3, 8, 4, 12, 5, 8, 6, 20, 7, 24, 8, 12, 9, 32, 10, 36, 11, 16, 12, 44, 13, 24, 14, 20, 15, 56, 16, 60, 17, 24,..
Number of ways to write n as (p - q)/(1 - 1/q), where p is prime and q is a prime divisor of n: 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 1, 0, 1, 2, 0, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 0, 1, 0, 3, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 3, 0, 0, 1, 1, 0,...
Numbers n of the form (s - r)(1/s - 1) where s is divisor of n and r is anti-divisor of n: 10, 12, 14,...
The n-th row starts with 1 and ends with 2n-1; the first differences are symmetric w.r.t. reversal of the row (which corresponds to exchange of k and n/k). The second term in even lines is n/2+2. - M. F. Hasler, Jan 26 2013
If n is prime then n-th row is 1, 2n-1. - Zak Seidov, Feb 22 2013
T(n,A000005(n)) = A005408(n-1). - Reinhard Zumkeller, Feb 25 2013

Examples

			Triangle begins:
1,
1, 3,
1, 5,
1, 4, 7,
1, 9,
1, 5, 7, 11,
1, 13,
1, 6, 10, 15,
1, 9, 17,
1, 7, 13, 19,
1, 21,
1, 8, 11, 13, 16, 23.
In this last, 12th line (ending with 2*12-1), the first differences are (7,3,2,3,7).
		

Crossrefs

Row lengths are A000005.

Programs

  • Haskell
    a208239 n k = a208239_row n !! k
    a208239_row n = map (+ n) $ zipWith (-) divs $ reverse divs
                    where divs = a027750_row n
    a208239_tabl = map a208239_row [1..]
    -- Reinhard Zumkeller, Feb 25 2013
  • Mathematica
    row[n_] := Table[n + k - n/k, {k, Divisors[n]}]; Table[row[n], {n, 1, 24}] // Flatten (* Jean-François Alcover, Jan 21 2013 *)

Formula

T(n,k) = n + A027750(n,k) + A027750(n,A000005(n)+1-k), 1<=k<=A000005(n). - Reinhard Zumkeller, Feb 25 2013

A309633 G.f.: x * Sum_{k>=1} x^k / (1 - a(k)*x^k).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 6, 4, 1, 7, 1, 13, 11, 6, 1, 7, 17, 7, 11, 31, 1, 45, 1, 10, 18, 6, 146, 34, 1, 9, 27, 141, 1, 261, 1, 78, 364, 8, 1, 44, 730, 537, 18, 145, 1, 255, 1281, 2203, 51, 33, 1, 2213, 1, 47, 7461, 221, 4722, 1159, 1, 85, 38, 27948, 1, 2342, 1, 36, 17060, 347, 63146, 3427, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 10 2019

Keywords

Crossrefs

Cf. A028815 (positions of 1's), A087909, A127525, A309634.

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x Sum[x^k/(1 - a[k] x^k), {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 80}]
    a[n_] := a[n] = Sum[a[d]^((n - 1)/d - 1) , {d, Divisors[n - 1]}]; a[1] = 0; a[2] = 1; Table[a[n], {n, 1, 80}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, #v-1, v[n+1]=sumdiv(n, d, v[d]^(n/d-1))); v} \\ Andrew Howroyd, Aug 10 2019

Formula

a(1) = 0; a(n+1) = Sum_{d|n} a(d)^(n/d-1).

A356543 a(n) = Sum_{d|n} (d!)^(n/d-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 12, 2, 34, 38, 138, 2, 1546, 2, 5106, 15698, 54274, 2, 889314, 2, 5689090, 25448258, 39917826, 2, 2486196610, 207360002, 6227024898, 131683574018, 215393466370, 2, 14769495662082, 2, 86475697160194, 1593350982706178, 355687428161538, 648227266560002
Offset: 1

Views

Author

Seiichi Manyama, Aug 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (#)!^(n/# - 1) &]; Array[a, 35] (* Amiram Eldar, Aug 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d!^(n/d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-k!*x^k)))

Formula

G.f.: Sum_{k>=1} x^k/(1 - k! * x^k).
If p is prime, a(p) = 2.

A356661 a(n) = n! * Sum_{d|n} 1/d^(n/d - 1).

Original entry on oeis.org

1, 4, 12, 60, 240, 1860, 10080, 95760, 766080, 8210160, 79833600, 1100484000, 12454041600, 188172784800, 2683799838720, 44951306400000, 711374856192000, 13745322470880000, 243290200817664000, 5142812718440517120, 103294640229580800000, 2351280996859354560000
Offset: 1

Views

Author

Seiichi Manyama, Aug 21 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n! * DivisorSum[n, 1/#^(n/# - 1) &]; Array[a, 22] (* Amiram Eldar, Aug 21 2022 *)
  • PARI
    a(n) = n!*sumdiv(n, d, 1/d^(n/d-1));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/(1-x^k/k))))

Formula

a(p) = 2 * p! for prime p.
E.g.f.: Sum_{k>=1} x^k/(1 - x^k/k).

A359134 a(n) = Sum_{d|n} (2*d)^(n/d - 1).

Original entry on oeis.org

1, 3, 5, 13, 17, 55, 65, 201, 293, 779, 1025, 3365, 4097, 12303, 17781, 49681, 65537, 204547, 262145, 791549, 1095429, 3145751, 4194305, 12897625, 16787217, 50331675, 68788805, 201591509, 268435457, 815505231, 1073741825, 3223326753, 4355433957, 12884901923
Offset: 1

Views

Author

Seiichi Manyama, Jan 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (2*#)^(n/# - 1) &]; Array[a, 30] (* Amiram Eldar, Aug 14 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (2*d)^(n/d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-2*k*x^k)))

Formula

G.f.: Sum_{k>0} x^k / (1 - 2 * k * x^k).
If p is prime, a(p) = 1 + 2^(p-1).

A359811 a(n) = Sum_{d|n} 2^(d-1) * d^(n/d-1).

Original entry on oeis.org

1, 3, 5, 13, 17, 53, 65, 177, 293, 625, 1025, 2541, 4097, 8769, 17109, 34561, 65537, 136013, 262145, 534481, 1054629, 2110465, 4194305, 8449325, 16787217, 33615873, 67155845, 134403521, 268435457, 537370845, 1073741825, 2148270081, 4295327397, 8591179777
Offset: 1

Views

Author

Seiichi Manyama, Jan 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[2^(d-1) * d^(n/d - 1), {d, Divisors[n]}], {n, 1, 40}] (* Vaclav Kotesovec, Jan 14 2023 *)
  • PARI
    a(n) = sumdiv(n, d, 2^(d-1)*d^(n/d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, 2^(k-1)*x^k/(1-k*x^k)))

Formula

G.f.: Sum_{k>0} 2^(k-1) * x^k / (1 - k * x^k).
If p is prime, a(p) = 1 + 2^(p-1).
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Jan 14 2023

A213919 Triangle read by rows: T(n,m) = (n/k)^(k-1), where k is the m-th divisor of n, 1 <= m <= tau(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 4, 8, 1, 1, 9, 1, 1, 5, 16, 1, 1, 1, 1, 6, 16, 27, 32, 1, 1, 1, 1, 7, 64, 1, 1, 25, 81, 1, 1, 8, 64, 128, 1, 1, 1, 1, 9, 36, 243, 256, 1, 1, 1, 1, 10, 125, 256, 512, 1, 1, 49, 729, 1, 1, 11, 1024, 1, 1, 1, 1, 12, 64, 216, 1024, 2187, 2048, 1, 1, 625, 1, 1, 13, 4096, 1, 1, 81, 6561, 1, 1, 14, 343, 4096
Offset: 1

Views

Author

Gerasimov Sergey, Mar 05 2013

Keywords

Comments

Divisor k of composite number n with maximal value (n/k)^(k-1): 2, 3, 4, 3, 5, 6, 7, 5, 8, 9, 10, 7, 11, 8, 5, 13, 9, 14,...

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1;
  1, 2, 1;
  1, 1;
  1, 3, 4, 1;
  1, 1;
  1, 4, 8, 1;
  1, 9, 1;
  1, 5, 16, 1;
  1, 1;
  1, 6, 16, 27, 32, 1.
		

Crossrefs

Cf. A000005 (row lengths), A027750, A087909 (row sums), A167401, A208239.

Formula

T(n,k) = A027750(n, A000005(n) + 1 - k)/(A027750(n,k) - 1), 1 <= k <= A000005(n).

Extensions

a(83) corrected by Jason Yuen, Oct 27 2024

A214845 Triangle read by rows: T(n,m) =(n/k)^(k-1) mod k, where k is the m-th divisor of n, 1 <= m <= tau(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 3, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 3, 4, 1, 0, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 4, 3, 8, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 3, 1, 2, 1, 0, 1, 0, 1, 1, 1, 5, 3, 4, 1
Offset: 1

Views

Author

Gerasimov Sergey, Mar 08 2013

Keywords

Comments

Row lengths are tau(n) = A000005(n).
The sequence of row sums starts: 0, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 7, 1, 3, 3, 1, 1, 9, 1, 5, 3, 3, 1, 17, 1, 3, 1, 7, 1, 16, 1, 1, 3, 3, 3, 26, 1, 3, 3, 19, 1, 12, 1, 7, 18, 3, 1, 27, 1, 23...

Examples

			Triangle begins:
0;
0,1;
0,1;
0,0,1;
0,1;
0,1,1,1;
0,1;
0,0,0,1;
0,0,1;
0,1,1,1;
0,1;
0,0,1,3,2,1;
0,1;
0,1,1,1;
0,1,1,1;
0,0,0,0,1;
0,1;
0,1,0,3,4,1;
		

Crossrefs

Programs

  • Maple
    A214845 := proc(n,m)
        sort(convert(numtheory[divisors](n),list)) ;
        k := op(m,%) ;
        modp((n/k)^(k-1),k) ;
    end proc:
    for n from 1 to 30 do
        for m from 1 to numtheory[tau](n) do
            printf("%d,",A214845(n,m)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Apr 17 2013

A359812 a(n) = Sum_{d|n} (-1)^(d-1) * d^(n/d-1).

Original entry on oeis.org

1, 0, 2, -2, 2, -1, 2, -12, 11, -11, 2, -27, 2, -57, 108, -200, 2, -40, 2, -653, 780, -1013, 2, -1177, 627, -4083, 6644, -11959, 2, 5043, 2, -49680, 59172, -65519, 18028, -26670, 2, -262125, 531612, -713423, 2, 515723, 2, -3144419, 5180382, -4194281, 2
Offset: 1

Views

Author

Seiichi Manyama, Jan 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(#-1) * #^(n/# - 1) &]; Array[a, 50] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*d^(n/d-1));
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(-sum(k=1, N, (-x)^k/(1-k*x^k)))

Formula

G.f.: -Sum_{k>0} (-x)^k / (1 - k * x^k).
If p is an odd prime, a(p) = 2.

A326121 Expansion of Sum_{k>=1} k^2 * x^(2*k) / (1 - k * x^k).

Original entry on oeis.org

0, 1, 1, 5, 1, 18, 1, 33, 28, 58, 1, 246, 1, 178, 369, 577, 1, 1539, 1, 2774, 2531, 2170, 1, 16706, 3126, 8362, 20413, 35366, 1, 116444, 1, 135425, 178479, 131362, 94933, 1110999, 1, 524650, 1596521, 2530946, 1, 7280892, 1, 8403734, 16364457, 8389138, 1, 78568322, 823544, 43420683
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 10 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[k^2 x^(2 k)/(1 - k x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (n/#)^# &, # > 1 &], {n, 1, 50}]
  • PARI
    a(n)={sumdiv(n, d, if(d > 1, (n/d)^d))} \\ Andrew Howroyd, Sep 10 2019

Formula

a(n) = Sum_{d|n, d>1} (n/d)^d = Sum_{d|n, d
a(p) = 1, where p is prime.
a(n) = A055225(n) - n.
Previous Showing 11-20 of 20 results.