cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A188269 Prime numbers of the form k^4 + k^3 + 4*k^2 + 7*k + 5 = k^4 + (k+1)^3 + (k+2)^2.

Original entry on oeis.org

5, 59, 348077, 10023053, 30414227, 55367063, 72452489, 85856933, 109346759, 182679473, 254112143, 305966369, 433051637, 727914497, 2029672529, 4178961167, 6528621257, 8346080159, 12783893813, 17220494579, 17993776223, 19618171127, 23673478589, 29448235247, 43333033853
Offset: 1

Views

Author

Rafael Parra Machio, Jun 09 2011

Keywords

Comments

Bunyakovsky's conjecture implies that this sequence is infinite. - Charles R Greathouse IV, Jun 09 2011
All the terms in the sequence are congruent to 2 mod 3. - K. D. Bajpai, Apr 11 2014

Examples

			5 is prime and appears in the sequence because 0^4 + 1^3 + 2^2 = 5.
59 is prime and appears in the sequence because 2^4 + 3^3 + 4^2 = 59.
348077 = 24^4 + (24+1)^3 + (24+2)^2 = 24^4 + 25^3 + 26^2.
10023053 = 56^4 + (56+1)^3 + (56+2)^2 = 56^4 + 57^3 + 58^2.
		

Crossrefs

Programs

  • Maple
    select(isprime, [n^4+(n+1)^3+(n+2)^2$n=0..1000])[]; # K. D. Bajpai, Apr 11 2014
  • Mathematica
    lst={};Do[If[PrimeQ[p=n^4+n^3+4*n^2+7*n+5], AppendTo[lst, p]],{n,200}];lst
    Select[Table[n^4+n^3+4n^2+7n+5,{n,500}],PrimeQ] (* Harvey P. Dale, Jun 19 2011 *)
  • PARI
    for(n=1,1e3,if(isprime(k=n^4+n^3+4*n^2+7*n+5),print1(k", "))) \\ Charles R Greathouse IV, Jun 09 2011

Extensions

Duplicate Mathematica program deleted by Harvey P. Dale, Jun 19 2011
Missing term 5 inserted by Alois P. Heinz, Sep 21 2024

A237364 Numbers n of the form n=Phi(7,p) (for prime p) such that Phi(7,n) is also prime.

Original entry on oeis.org

616067011, 58749951412747, 93054242152309543, 146945091162352770847, 2224989620406870255043, 43184085337135904888293, 53224134341571172990843, 109539169818149034933067, 308295173856880401026941, 6197901576526752380316343, 14789135287218506962379317
Offset: 1

Views

Author

Derek Orr, Feb 06 2014

Keywords

Comments

Phi(7,x) =1+x+x^2+x^3+x^4+x^5+x^6 =A053716(x) is the 7th cyclotomic polynomial.

Examples

			616067011 = 29^6+29^5+29^4+29^3+29^2+29+1 (29 is prime) and 616067011^6+616067011^5+616067011^4+616067011^3+616067011^2+616067011+1 = 54672347801779330810964871392077416495507203132755717 is prime. Thus, 616067011 is a member of this sequence.
		

Crossrefs

Cf. A088550.

Programs

  • Maple
    for k from 1 do
        p := ithprime(k) ;
        n := numtheory[cyclotomic](7,p) ;
        pn := numtheory[cyclotomic](7,n) ;
        if isprime( pn) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, Feb 07 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n**6+n**5+n**4+n**3+n**2+n+1) for n in range(10**5) if isprime(n) and isprime((n**6+n**5+n**4+n**3+n**2+n+1)**6+(n**6+n**5+n**4+n**3+n**2+n+1)**5+(n**6+n**5+n**4+n**3+n**2+n+1)**4+(n**6+n**5+n**4+n**3+n**2+n+1)**3+(n**6+n**5+n**4+n**3+n**2+n+1)**2+(n**6+n**5+n**4+n**3+n**2+n+1)+1)}

A237446 Primes p such that f(f(p)) is prime where f(x) = Phi_6(x).

Original entry on oeis.org

29, 197, 673, 2297, 3613, 5923, 6133, 6917, 8219, 13553, 15667, 17137, 21911, 30941, 33587, 35407, 38053, 44017, 45557, 46663, 51241, 53453, 65731, 67187, 82349, 94151, 115361, 132287, 143711, 164011, 164291, 165523, 178613, 180797, 182141
Offset: 1

Views

Author

Derek Orr, Feb 08 2014

Keywords

Comments

Phi_k(x) is the k-th cyclotomic polynomial, see A013595 or A013596.

Examples

			29 is prime and f(29^6+29^5+29^4+29^3+29^2+29+1) = 54672347801779330810964871392077416495507203132755717 is prime. Thus, 29 is a member of this sequence.
		

Crossrefs

Programs

  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**6) if isprime(n) and isprime((n**6+n**5+n**4+n**3+n**2+n+1)**6+(n**6+n**5+n**4+n**3+n**2+n+1)**5+(n**6+n**5+n**4+n**3+n**2+n+1)**4+(n**6+n**5+n**4+n**3+n**2+n+1)**3+(n**6+n**5+n**4+n**3+n**2+n+1)**2+(n**6+n**5+n**4+n**3+n**2+n+1)+1)}
Previous Showing 11-13 of 13 results.