cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A088871 Numbers n which are divisors of the number produced by concatenating (n-1), (n-2), ... (n-10) in that order.

Original entry on oeis.org

10, 22, 55, 181, 190, 362, 905, 2035, 4070, 10490, 11203, 14686, 17833, 22406, 23065, 35666, 36715, 46130, 56015, 73430, 78421, 89165, 100705, 201410, 1004530, 1093165, 1425313, 1480309, 1695710, 1956190, 2186330, 2850626, 2882707
Offset: 1

Views

Author

Chuck Seggelin, Oct 20 2003

Keywords

Examples

			a(2)=22 because 22 is a factor of 21201918171615141312.
		

Crossrefs

Extensions

More terms from David Wasserman, Aug 26 2005

A088886 Minimum number of consecutive previous nonnegative integers to n that must be concatenated together in ascending order such that n divides the concatenated term, or zero if n divides no such concatenation.

Original entry on oeis.org

1, 0, 2, 0, 0, 0, 2, 0, 8, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 26, 0, 6, 0, 0, 0, 11, 0, 0, 0, 10, 0, 0, 0, 16, 0, 15, 0, 0, 0, 25, 0, 4, 0, 45, 0, 0, 0, 0, 0, 20, 0, 51, 0, 45, 0, 0, 0, 0, 0, 2, 0, 35, 0, 22, 0, 0, 0, 0, 0, 21, 0, 0, 0, 0, 0, 81, 0, 0, 0, 6, 0, 0, 0, 0, 0, 66, 0, 0, 0, 13
Offset: 1

Views

Author

Chuck Seggelin, Oct 29 2003

Keywords

Comments

Concatenation always end at n-1 and cannot start further than n-n (zero). Hence the maximum value of a(n) is n.

Examples

			a(7) = 2 because 7 will divide the number formed by concatenating the 2 integers prior to 7 in ascending order (i.e. 56). a(6) = 0 because 6 will not divide 5, 45, 345, 2345, 12345, or 012345.
		

Crossrefs

A281232 Numbers k such that k+2 divides concat(k, k+1).

Original entry on oeis.org

1, 5, 65, 665, 6665, 66665, 666665, 2857141, 6666665, 66666665, 666666665, 1052631577, 6666666665, 66666666665, 666666666665, 2857142857141, 6666666666665, 11764705882351, 66666666666665, 666666666666665, 6666666666666665, 66666666666666665, 666666666666666665
Offset: 1

Views

Author

Paolo P. Lava, Jan 18 2017

Keywords

Comments

Numbers of the form 60*(10^j - 1)/9 + 5, for j >= 0, belong to the sequence.
The ratios are: 4, 8, 98, 998, 9998, 99998, 999998, 9999994, 9999998, 99999998, 999999998, 9999999982, 9999999998, ...
Numbers of the form t(j) = 20*(10^(6*j) - 1)/7 + 1, for j >= 0, belong to the sequence, because (10^(6*j+1)*t(j) + t(j) + 1)/(t(j) + 2) = 10^(6*j+1) - 6. - Bruno Berselli, Oct 09 2018

Examples

			concat(2857141, 2857142) / 2857143 = 28571412857142 / 2857143 = 9999994.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local c,n;
    for n from 1 to q do c:=n*10^(ilog10(n+1)+1)+n+1;
    if type(c/(n+2),integer) then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range[10^7], Divisible[FromDigits@ Flatten@ Map[IntegerDigits, {#, # + 1}], # + 2] &] (* Michael De Vlieger, Jan 19 2017 *)
  • PARI
    isok(n) = !(eval(Str(n, n+1)) % (n+2)); \\ Michel Marcus, Oct 09 2018

Formula

a(n) = A088797(n) - 2. - Alois P. Heinz, Jan 19 2017

Extensions

More terms from Alois P. Heinz, Jan 19 2017

A292885 a(n) is the least number k such that k | concat(k-n,k-n+1,…,k,…,k+n-1,k+n).

Original entry on oeis.org

1, 3, 3, 9, 6, 9, 9, 9, 9, 27, 15, 33, 18, 27, 18, 21, 18, 27, 27, 27, 24, 27, 27, 27, 27, 27, 27, 143, 34, 143, 45, 63, 36, 39, 39, 45, 42, 143, 89, 57, 45, 43, 143, 99, 54, 135, 154, 63, 63, 63, 75, 63, 154, 189, 66, 165, 72, 171, 153, 189, 90, 63, 81, 69, 69
Offset: 0

Views

Author

Paolo P. Lava, Sep 26 2017

Keywords

Examples

			a(4) = 6 because concat(2, 3, 4, 5, 6, 7, 8, 9, 10) = 2345678910 is a multiple of 6 and 6 is the least number to have this property.
		

Crossrefs

Programs

Previous Showing 11-14 of 14 results.