cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-73 of 73 results.

A235629 Primes whose base-9 representation also is the base-5 representation of a prime.

Original entry on oeis.org

2, 3, 11, 19, 29, 31, 101, 109, 181, 191, 199, 281, 337, 739, 751, 769, 811, 821, 839, 919, 929, 991, 1459, 1489, 1549, 1721, 1741, 1811, 2269, 2281, 2371, 2389, 2441, 2459, 2531, 2539, 2551, 2953, 3089, 3109, 3251, 3271, 6571, 6599, 6661, 6907, 7309, 7321, 7489, 7537, 8039
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			Both 11 = 12_9 and 12_5 = 7 are prime.
		

Crossrefs

Cf. A235482, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235639. See the LINK for further cross-references.

Programs

  • Mathematica
    pr95Q[n_]:=Module[{idn9=IntegerDigits[n,9]},Max[idn9]<5&&PrimeQ[ FromDigits[ idn9,5]]]; Select[Prime[Range[1100]],pr95Q] (* Harvey P. Dale, Nov 30 2022 *)
  • PARI
    is(p,b=5,c=9)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,3e3,is(p,9,5)&&print1(vector(#d=digits(p,5),i,9^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,5,9)

A267767 Numbers whose base-7 representation is a square when read in base 10.

Original entry on oeis.org

0, 1, 4, 13, 19, 27, 46, 49, 64, 81, 117, 139, 165, 190, 196, 225, 313, 361, 433, 460, 571, 603, 637, 705, 748, 837, 883, 931, 981, 1048, 1105, 1222, 1323, 1489, 1560, 1684, 1744, 2028, 2185, 2254, 2346, 2401, 2500, 2601, 2763, 2869, 3084, 3136, 3249, 3364, 3547, 3667, 3865, 3969, 4096
Offset: 1

Views

Author

M. F. Hasler, Jan 20 2016

Keywords

Comments

Trivially includes powers of 49, since 49^k = 100..00_7 = 10^(2k) when read in base 10. Moreover, for any a(n) in the sequence, 49*a(n) is also in the sequence. One could call "primitive" the terms not of this form. These primitive terms include the subsequence 49^k + 2*7^k + 1 = (7^k+1)^2, k > 0, which yields A033934 when written in base 7.

Crossrefs

Cf. A267763 - A267769 for bases 3 through 9. The base-2 analog is A000302 = powers of 4.

Programs

  • Magma
    [n: n in [0..10^4] | IsSquare(Seqint(Intseq(n, 7)))]; // Vincenzo Librandi, Dec 28 2016
  • Mathematica
    Select[Range[0, 2 10^4], IntegerQ@Sqrt@FromDigits@IntegerDigits[#, 7] &] (* Vincenzo Librandi, Dec 28 2016 *)
  • PARI
    is(n,b=7,c=10)=issquare(subst(Pol(digits(n,b)),x,c))
    
  • Python
    A267767_list = [int(s, 7) for s in (str(i**2) for i in range(10**6)) if max(s) < '7'] # Chai Wah Wu, Jan 20 2016
    

A281299 Primes p whose binary representation p_2 is the decimal representation of a prime q; and also the sum of the decimal digits of p equals the sum of the digits of p_2.

Original entry on oeis.org

5011, 7001, 11251, 22501, 32303, 32411, 90031, 101107, 104123, 108011, 111323, 121343, 122131, 124001, 125101, 141023, 224011, 233021, 235003, 241141, 321203, 324011, 421303, 432031, 442201, 510331, 511213, 520411, 801011, 1000183, 1000541, 1001191, 1005223, 1006231
Offset: 1

Views

Author

K. D. Bajpai, Jan 19 2017

Keywords

Comments

Intersection of A037308 and A065720.

Examples

			a(1) = 5011 is a prime;
5011_2 = 1001110010011_10 is a prime;
5 + 0 + 1 + 1 = 7;
1 + 0 + 0 + 1 + 1 + 1 + 0 + 0 + 1 + 0 + 0 + 1 + 1 = 7; both the digit sums are equal.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PrimeQ[FromDigits[IntegerDigits[#, 2]]] && Plus @@ IntegerDigits[#] == Plus @@ IntegerDigits[FromDigits[IntegerDigits[#, 2]]] &]
  • PARI
    eva(n) = subst(Pol(n), x, 10)
    is(n) = ispseudoprime(n) && ispseudoprime(eva(binary(n))) && sumdigits(n)==sumdigits(eva(binary(n))) \\ Felix Fröhlich, Jan 19 2017
Previous Showing 71-73 of 73 results.