cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A174530 Numerators of the second row of the Akiyama-Tanigawa table for the sequence 1/n!.

Original entry on oeis.org

-1, 0, 3, 4, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 1, 1, 1, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 1, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79
Offset: 0

Views

Author

Paul Curtz, Mar 21 2010

Keywords

Comments

Filling the top row of a table with T(0,k) = 1/k!, k>=0, the Akiyama-Tanigawa algorithm constructs the following table T(n,k) of fractions, n>=0, k>=0:
1, 1, 1/2, 1/6, 1/24, 1/120, 1/720, 1/5040, 1/40320, 1/362880,...
0, 1, 1, 1/2, 1/6, 1/24, 1/120, 1/720, 1/5040, 1/40320, 1/362880, ...
-1, 0, 3/2, 4/3, 5/8, 1/5, 7/144, 1/105, 1/640, 1/4536, 11/403200, ...
-1, -3, 1/2, 17/6, 17/8, 109/120, 197/720, 107/1680, 487/40320, ..
2, -7, -7, 17/6, 73/12, 457/120, 529/360, 2081/5040, 263/2880,...
9, 0, -59/2, -13, 91/8, 421/30, 355/48, 2161/840, 3871/5760, 709/5040, ..
9, 59, -99/2, -195/2, -319/24, 1593/40, 2701/80, 76631/5040, 4285/896,...
The numerators of T(2,k) are the current sequence.
The denominators are 1, 1, 2, 3, 8, 5, 144, 105, 640, 4536, 403200, 332640, 43545600, 37065600,...
T(0,k) = T(1,k+1), shifted.
The left column is T(n,0) = (-1)^(n+1)*A014182(n).
The column T(n,1) appears to be (-1)^n*A074051(n). - R. J. Mathar, Jan 16 2011
a(n) = numerator(A005563(n-1)/(n-1)!), for n>0. - Fred Daniel Kline, Mar 20 2016

Crossrefs

Programs

  • Mathematica
    nn = 78; Numerator[Simplify[CoefficientList[Series[-Zeta[x] + (Derivative[1][Zeta][x] + x*Derivative[2][Zeta][x])*x, {x, 0, nn}], x]/Table[Derivative[n][Zeta][0], {n, 0, nn}]]] (* Mats Granvik, Nov 11 2013 *)

A273878 Numerator of (2*(n+1)!/(n+2)).

Original entry on oeis.org

1, 4, 3, 48, 40, 1440, 1260, 8960, 72576, 7257600, 6652800, 958003200, 889574400, 11623772160, 163459296000, 41845579776000, 39520825344000, 12804747411456000, 12164510040883200, 231704953159680000, 4644631106519040000
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2016

Keywords

Comments

The moments, i.e. E(X^n) = int(x^n * p(x), x = 0..infinity) for n > 0, of the probability density function p(x) = 2*x*E(x, 1, 1), see A163931, lead to this sequence.

Examples

			The first few moments of p(x) are: 1, 4/3, 3, 48/5, 40, 1440/7, … .
		

Crossrefs

Programs

  • Maple
    a := proc(n): numer(2*(n+1)!/(n+2)) end: seq(a(n), n=0..20);
  • PARI
    a(n) = numerator(2*(n+1)!/(n+2)) \\ Felix Fröhlich, Jun 09 2016

Formula

a(n) = numer(2*(n+1)!/(n+2))
a(n) = (n+1) * A090586(n+1)
a(2*n) = A110468(n) and a(2*n+1) = (2*n)!*A085250(n+1)/A128060(n+2).

A308090 a(n) = gcd(2^n + n!, 3^n + n!, n+1).

Original entry on oeis.org

1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1, 1, 1, 23, 1, 1, 1, 1, 1, 29, 1, 31, 1, 1, 1, 1, 1, 37, 1, 1, 1, 41, 1, 43, 1, 1, 1, 47, 1, 1, 1, 1, 1, 53, 1, 1, 1, 1, 1, 59, 1, 61, 1, 1, 1, 1, 1, 67, 1, 1, 1, 71, 1, 73, 1, 1, 1, 1, 1, 79, 1, 1, 1, 83, 1, 1, 1, 1, 1, 89, 1, 1, 1, 1, 1, 1, 1, 97, 1, 1, 1
Offset: 1

Views

Author

Pedro Caceres, May 11 2019

Keywords

Comments

From observation: For n > 3, if n+1 is prime, then a(n) = n+1.
This implies that (2^n + n!)= 0 mod (n+1) iff (n+1) is prime, and (3^n + n!)= 0 mod (n+1) iff (n+1) is prime.
Conjecture: Conversely, if gcd(2^n + n!, 3^n + n!, n+1) = n+1, then n+1 is prime.
Appears to be the same as A090585(n) except at n=2. - R. J. Mathar, Jul 22 2021

Examples

			a(4) = gcd(2^4 + 4!, 3^4 + 4!, 5) = gcd(40, 105, 5) = 5.
a(5) = gcd(2^5 + 5!, 3^5 + 5!, 6) = gcd(152, 363, 6) = 1.
		

Crossrefs

Programs

  • Mathematica
    Table[GCD[2^n+n!,3^n+n!,n+1],{n,100}] (* Harvey P. Dale, Aug 27 2020 *)
  • PARI
    a(n) = gcd([2^n + n!, 3^n + n!, n+1]); \\ Michel Marcus, May 12 2019

Formula

a(n) = gcd(A007611(n), A249945(n), n+1).
Previous Showing 11-13 of 13 results.