cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A158018 Primes p such that (p - 1)/12 is also prime.

Original entry on oeis.org

37, 61, 157, 229, 277, 349, 373, 709, 733, 853, 877, 997, 1069, 1213, 1237, 1669, 1789, 2293, 2389, 2677, 2749, 2797, 3229, 3253, 3373, 3517, 3733, 4549, 4597, 4813, 4909, 5197, 5557, 5749, 6037, 6277, 6829, 7213, 7573, 7717, 7933, 8293, 8629, 9013, 9133
Offset: 1

Views

Author

Roger L. Bagula, Mar 11 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[If[PrimeQ[n] && PrimeQ[(n - 1)/12], n, {}], {n, 1, 10000}]]
    Select[Prime[Range[1500]], PrimeQ[(# - 1) / 12]&] (* Vincenzo Librandi, Apr 14 2013 *)

Formula

a(n)=12*A075704(n)+1. [From R. J. Mathar, Mar 15 2009]

Extensions

Definition slightly rephrased - The Assoc. Eds. of the OEIS, Aug 30 2010

A265765 Numerators of primes-only best approximates (POBAs) to 4; see Comments.

Original entry on oeis.org

11, 7, 13, 11, 19, 29, 43, 53, 67, 149, 163, 173, 211, 269, 283, 293, 317, 331, 389, 509, 523, 547, 557, 653, 691, 773, 787, 797, 907, 1051, 1109, 1123, 1171, 1229, 1493, 1531, 1637, 1723, 1733, 1867, 1949, 1997, 2011, 2083, 2251, 2309, 2347, 2371, 2467
Offset: 1

Views

Author

Clark Kimberling, Dec 18 2015

Keywords

Comments

Suppose that x > 0. A fraction p/q of primes is a primes-only best approximate (POBA), and we write "p/q in B(x)", if 0 < |x - p/q| < |x - u/v| for all primes u and v such that v < q, and also, |x - p/q| < |x - p'/q| for every prime p' except p. Note that for some choices of x, there are values of q for which there are two POBAs. In these cases, the greater is placed first; e.g., B(3) = (7/2, 5/2, 17/5, 13/5, 23/7, 19/7, ...). See A265759 for a guide to related sequences.

Examples

			The POBAs for 4 start with  11/2, 7/2, 13/3, 11/3, 19/5, 29/7, 43/11, 53/13, 67/17. For example, if p and q are primes and q > 13, then 53/13 is closer to 3 than p/q is.
		

Crossrefs

Programs

  • Mathematica
    x = 4; z = 200; p[k_] := p[k] = Prime[k];
    t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
    t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
    d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
    v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
    b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
    y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265765/A120639 *)
    Numerator[tL]   (* A162857 *)
    Denominator[tL] (* A062737 *)
    Numerator[tU]   (* A090866 *)
    Denominator[tU] (* A023212 *)
    Numerator[y]    (* A265765 *)
    Denominator[y]  (* A120639 *)

A180642 Numbers k such that phi(k)/4 is a prime, where phi is the Euler totient function.

Original entry on oeis.org

13, 15, 16, 20, 21, 24, 25, 26, 28, 29, 30, 33, 36, 42, 44, 50, 53, 58, 66, 69, 92, 106, 138, 141, 149, 173, 177, 188, 236, 249, 269, 282, 293, 298, 317, 321, 332, 346, 354, 389, 428, 498, 501, 509, 537, 538, 557, 586, 634, 642, 653, 668, 681, 716, 773, 778, 789
Offset: 1

Views

Author

Carmine Suriano, Sep 14 2010

Keywords

Comments

Apparently the sequence is infinite, but I have no proof. There are many n-ples of consecutives: (15,16)-(20,21)-(24,25,26)-(537,538)-(1436,1437)-...-(30236-30237)
This sequence is infinite if and only if there are infinitely many primes of the form 2p+1 or 4p+1 with prime p. - Charles R Greathouse IV, Feb 04 2013

Examples

			a(5) = 21 since pi(21)/4 = 12/4 = 3 is prime.
		

Crossrefs

Cf. A000010, A065966 (phi(k)/2 is prime), A090866 (subsequence of primes).

Programs

  • Mathematica
    Select[Range[800],PrimeQ[EulerPhi[#]/4]&] (* Harvey P. Dale, Feb 11 2015 *)
  • PARI
    is(n)=n=eulerphi(n);n%4==0 && isprime(n/4) \\ Charles R Greathouse IV, Feb 04 2013
    
  • PARI
    is(n)=if(n<51,n=eulerphi(n);n%4==0 && isprime(n/4),my(v=[3,4,6]);for(i=1,#v,if(n%(2*v[i])==v[i]&&gcd(n/v[i],v[i])==1&&isprime(n/v[i])&&isprime(eulerphi(n)/4),return(1)));if(n%4==2,n/=2);n%4==1&&isprime(n)&&isprime(n\4)) \\ Charles R Greathouse IV, Feb 04 2013

Formula

a(n) >> n log^2 n. - Charles R Greathouse IV, Feb 04 2013

A285016 Primes of the form p*b^b - 1, where p is a prime and b>1.

Original entry on oeis.org

7, 11, 19, 43, 53, 67, 163, 211, 283, 331, 523, 547, 691, 787, 907, 1051, 1123, 1171, 1279, 1531, 1723, 1867, 2011, 2083, 2251, 2347, 2371, 2467, 2707, 2731, 2803, 2971, 3187, 3307, 3547, 3643, 3907, 3931, 4051, 4243, 4363, 4603, 4651, 4723, 5107, 5227
Offset: 1

Views

Author

Vincenzo Librandi, May 12 2017

Keywords

Examples

			a(1) = 2*(2^2)-1 = 7.
a(2) = 3*(2^2)-1 = 11.
a(3) = 5*(2^2)-1 = 19.
a(4) = 11*(2^2)-1 = 43.
		

Crossrefs

Programs

  • Mathematica
    nmax=10^4; pimax=PrimePi[nmax]; bmax=1;While[(bmax+1)^(bmax+1)<=nmax,bmax++]; Select[Union@Flatten@Table[Prime[pi] b^b-1,{b,2,bmax},{pi,pimax}],PrimeQ[#]&&#<=nmax&]
  • PARI
    is(n)=for(b=2,oo, my(B=b^b); if((n+1)%B==0 && isprime((n+1)/B), return(isprime(n))); if(2*B+1>n, return(0))) \\ Charles R Greathouse IV, Jun 16 2022
    
  • PARI
    list(lim)=my(v=List()); lim\=1; for(b=2,oo, my(p=2*b^b-1); if(p>lim, break); if(isprime(p), listput(v,p))); forstep(b=2,oo,2, my(B=b^b); if(3*B-1>lim, break); forprime(q=3,(lim+1)\B, my(p=q*B-1); if(isprime(p), listput(v,p)))); Set(v) \\ Charles R Greathouse IV, Jun 16 2022

A318251 Lesser of amicable numbers pair (m, n) such that n = H(m) and m = H(n) where H(n) = A074206(n) is the number of ordered factorizations of n.

Original entry on oeis.org

6144, 19329024, 939524096, 4026531840, 309237645312, 6146186280960, 52158082842624, 29273397577908224
Offset: 1

Views

Author

Amiram Eldar, Aug 22 2018

Keywords

Comments

The larger numbers in each pair are in A318252.
Analogous to A002025 as A163272 is analogous to A000396.
If p and 4p+1 are primes then 2^(4p-1)*p is in this sequence, therefore if A023212 is infinite then also this sequence is.
The terms were calculated using an extended list of terms of A025487.

Examples

			6144 is in the sequence since A074206(6144) = 13312 and A074206(13312) = 6144.
		

Crossrefs

Programs

  • PARI
    f(n) = if( n<2, n>0, my(A = divisors(n)); sum(k=1, #A-1, f(A[k])));
    isok(n)={my(a=f(n)); a>n && f(a)==n;} \\ Michel Marcus, Sep 26 2018

A318252 Larger of amicable numbers pair (m, n) such that n = H(m) and m = H(n) where H(n) = A074206(n) is the number of ordered factorizations of n.

Original entry on oeis.org

13312, 81551360, 1946157056, 128580583424, 12695923326976, 33590071001088, 2182874178519040, 59672695062659072
Offset: 1

Views

Author

Amiram Eldar, Aug 22 2018

Keywords

Comments

The lesser numbers in each pair are in A318251.
Analogous to A002046 as A163272 is analogous to A000396.
If p and 4p+1 are primes then 2^(4p-2)*(4p+1) is in this sequence.

Examples

			13312 is in the sequence since A074206(13312) = 6144 and A074206(6144) = 13312.
		

Crossrefs

Programs

  • PARI
    f(n) = if( n<2, n>0, my(A = divisors(n)); sum(k=1, #A-1, f(A[k])));
    isok(n)={my(a=f(n)); aMichel Marcus, Sep 26 2018
Previous Showing 11-16 of 16 results.