cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A173256 Partial sums of A001481.

Original entry on oeis.org

0, 1, 3, 7, 12, 20, 29, 39, 52, 68, 85, 103, 123, 148, 174, 203, 235, 269, 305, 342, 382, 423, 468, 517, 567, 619, 672, 730, 791, 855, 920, 988, 1060, 1133, 1207, 1287, 1368, 1450, 1535, 1624, 1714, 1811, 1909, 2009, 2110, 2214, 2320, 2429, 2542, 2658, 2775
Offset: 1

Views

Author

Jonathan Vos Post, Feb 14 2010

Keywords

Comments

The subsequence of primes in this sequence begins 3, 7, 29, 103, 269, 619, 1811, 3271.

Examples

			a(66) = 0 + 1 + 2 + 4 + 5 + 8 + 9 + 10 + 13 + 16 + 17 + 18 + 20 + 25 + 26 + 29 + 32 + 34 + 36 + 37 + 40 + 41 + 45 + 49 + 50 + 52 + 53 + 58 + 61 + 64 + 65 + 68 + 72 + 73 + 74 + 80 + 81 + 82 + 85 + 89 + 90 + 97 + 98 + 100 + 101 + 104 + 106 + 109 + 113 + 116 + 117 + 121 + 122 + 125 + 128 + 130 + 136 + 137 + 144 + 145 + 146 + 148 + 149 + 153 + 157 + 160 = 4876.
		

Crossrefs

Programs

  • Maple
    N:= 1000:
    A001481:= sort(convert({seq(seq(x^2+y^2, y=0..floor(sqrt(N-x^2))),x=0..floor(sqrt(N)))},list)):
    ListTools:-PartialSums(A001481); # Robert Israel, Mar 15 2016
  • Python
    from itertools import count, accumulate, islice
    from sympy import factorint
    def A173256_gen(): # generator of terms
        return accumulate(filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),count(0)))
    A173256_list = list(islice(A173256_gen(),30)) # Chai Wah Wu, Jun 27 2022

Formula

a(n) = Sum_{i=1..n} A001481(i) = Sum_{i=1..n} (numbers that are the sum of 2 nonnegative squares) = Sum_{i=1..n} (numbers n such that i = x^2 + y^2 has a solution in nonnegative integers x, y).

Extensions

a(21) corrected by Robert Israel, Mar 15 2016

A225836 Numbers of form 2^j*(4k+1), j >= 0, k >= 1.

Original entry on oeis.org

5, 9, 10, 13, 17, 18, 20, 21, 25, 26, 29, 33, 34, 36, 37, 40, 41, 42, 45, 49, 50, 52, 53, 57, 58, 61, 65, 66, 68, 69, 72, 73, 74, 77, 80, 81, 82, 84, 85, 89, 90, 93, 97, 98, 100, 101, 104, 105, 106, 109, 113, 114, 116, 117, 121, 122, 125, 129, 130, 132, 133
Offset: 1

Views

Author

Ralf Stephan, May 16 2013

Keywords

Comments

A091072 without the powers of 2.

Crossrefs

Cf. A091067.

Programs

  • Magma
    [n: n in [1..200] | d gt 1 and IsOne(d mod 4) where d is n div 2^Valuation(n,2)]; // Bruno Berselli, May 16 2013
  • Mathematica
    mx = 149; t = {}; Do[n = 2^j (4 k + 1); If[n <= mx, AppendTo[t, n]], {j, 0, Log[2, mx]}, {k, mx/4}]; Union[t] (* T. D. Noe, May 16 2013 *)
  • PARI
    for(n=1,200,t=n/2^valuation(n,2);if(t>1&&(t%4==1),print1(n,",")))
    
  • PARI
    is(n)=n>>=valuation(n,2); n%4==1 && n>1 \\ Charles R Greathouse IV, Sep 27 2015
    
  • PARI
    list(lim)=my(v=List(),t); forstep(n=5,lim,4, listput(v,t=n); while((t<<=1)<=lim, listput(v,t))); Set(v) \\ Charles R Greathouse IV, Sep 27 2015
    

Formula

a(n) ~ 2n. - Charles R Greathouse IV, Sep 27 2015

A289194 Lexicographically earliest sequence of distinct positive terms such that the product of two consecutive terms has no isolated 1 in its base-2 representation.

Original entry on oeis.org

1, 3, 2, 6, 4, 7, 8, 12, 5, 11, 9, 14, 16, 15, 13, 19, 21, 22, 10, 23, 17, 24, 18, 27, 29, 30, 26, 35, 52, 38, 25, 31, 32, 28, 33, 47, 34, 46, 20, 39, 40, 44, 36, 43, 37, 48, 41, 75, 53, 59, 61, 54, 57, 55, 58, 60, 64, 51, 65, 56, 66, 62, 50, 71, 45, 78, 42
Offset: 1

Views

Author

Rémy Sigrist, Jun 28 2017

Keywords

Comments

A144795 gives the numbers without isolated 1's in base-2 representation.
This sequence is conjectured to be a permutation of the natural numbers.
This sequence has similarities with A269361: here we require that the product of two consecutive terms has no isolated 1, there the product of two consecutive terms has only isolated 1's, in base-2 representation.
For any k > 0:
- a(2*k-1) belongs to A091072,
- a(2*k) belongs to A091067.

Examples

			The first terms, alongside a(n)*a(n+1) in binary, are:
n       a(n)    a(n)*a(n+1) in binary
--      ----    ---------------------
1       1       11
2       3       110
3       2       1100
4       6       11000
5       4       11100
6       7       111000
7       8       1100000
8       12      111100
9       5       110111
10      11      1100011
11      9       1111110
12      14      11100000
13      16      11110000
14      15      11000011
15      13      11110111
16      19      110001111
17      21      111001110
18      22      11011100
19      10      11100110
20      23      110000111
		

Crossrefs

Programs

  • Mathematica
    a = {1}; Do[k = 1; While[Nand[! MemberQ[a, k], ! MemberQ[Length /@ DeleteCases[Split[IntegerDigits[k Last[a], 2]], s_ /; First@ s == 0], 1]], k++]; AppendTo[a, k], {n, 2, 67}]; a (* Michael De Vlieger, Jun 29 2017 *)

A379925 Numbers k for which nonnegative integers x and y exist such that x^2 + y^2 = k and x + y is a square.

Original entry on oeis.org

0, 1, 8, 10, 16, 41, 45, 53, 65, 81, 128, 130, 136, 146, 160, 178, 200, 226, 256, 313, 317, 325, 337, 353, 373, 397, 425, 457, 493, 533, 577, 625, 648, 650, 656, 666, 680, 698, 720, 746, 776, 810, 848, 890, 936, 986, 1040, 1098, 1160, 1201, 1205, 1213, 1225, 1226
Offset: 1

Views

Author

Felix Huber, Jan 25 2025

Keywords

Comments

Numbers k for which exists at least one solution to k = x^2 + (z^2 - x)^2 in integers x and z with x >= 0 and z >= sqrt(2*x).
Subsequence of A001481.

Examples

			10 is in the sequence because 10 = 1^2 + 3^2 and 1 + 3 = 2^2.
81 is in the sequence because 81 = 0^2 + 9^2 and 0 + 9 = 3^2.
		

Crossrefs

Programs

  • Maple
    # Calculates the first 10005 terms.
    A379925:=proc(K)
        local i,j,L;
        L:={};
        for i from 0 to floor(sqrt((K+1)^2)/2) do
            for j from 0 to floor(sqrt((K+1)^2/2-i^2)) do
                if issqr(i+j) then
                    L:=L union {i^2+j^2}
                fi
            od
        od;
        return op(L)
    end proc;
    A379925(1737);
  • PARI
    isok(n)=my(x=0, r=0); while(x<=sqrt(n) && r==0, if(issquare(n-x^2) && issquare(x+sqrtint(n-x^2)), r=1); x++); r; \\ Michel Marcus, Feb 10 2025

Formula

k = m^(4*j) is in the sequence for nonnegative integers m and j (not both 0) because x = 0 and z = m^j is a solution to m^(4*j) = x^2 + (z^2 - x)^2.
Previous Showing 21-24 of 24 results.