A368092
a(n) = A160014(m, n) * a(n - 1) for m = 2 and n > 0, a(0) = 1.
Original entry on oeis.org
1, 3, 9, 135, 405, 8505, 127575, 382725, 1148175, 189448875, 3978426375, 155158628625, 2327379429375, 6982138288125, 20946414864375, 37389350532909375, 112168051598728125, 6393578941127503125, 1054940525286038015625, 3164821575858114046875, 66461253093020394984375
Offset: 0
-
from functools import cache
@cache
def a_rec(n):
if n == 0: return 1
p = mul(s for s in map(lambda i: i + 2, divisors(n)) if is_prime(s))
return p * a_rec(n - 1)
print([a_rec(n) for n in range(21)])
# Alternatively, but less efficient:
def a(n): return (2**(n%2 - n) * lcm(product(r + 2 for r in p) for p in Partitions(n)))
A368093
Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0
Array A(m, n) starts:
[0] 1, 1, 2, 6, 12, 60, 360, 2520, ... A048803
[1] 1, 2, 12, 24, 720, 1440, 60480, 120960, ... A091137
[2] 1, 3, 9, 135, 405, 8505, 127575, 382725, ... A368092
[3] 1, 1, 5, 5, 175, 175, 875, 875, ...
[4] 1, 5, 25, 875, 4375, 21875, 765625, 42109375, ...
[5] 1, 1, 7, 7, 49, 49, 3773, 3773, ...
[6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
[7] 1, 1, 1, 1, 11, 11, 143, 143, ...
[8] 1, 1, 1, 11, 11, 143, 1573, 1573, ...
[9] 1, 1, 11, 11, 1573, 1573, 17303, 17303, ...
-
from functools import cache
def Clausen(n, k):
return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
@cache
def CumProdClausen(m, n):
return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])
A091136
Smallest number m such that number of times m divides k! is almost k/n for large k, i.e., smallest m with A090624(m)=n.
Original entry on oeis.org
1, 2, 3, 8, 5, 32, 7, 128, 25, 512, 11, 2048, 13, 8192, 2187, 32768, 17, 131072, 19, 524288, 121, 2097152, 23, 8388608, 169, 33554432, 1594323, 134217728, 29, 536870912, 31, 2147483648, 289, 8589934592, 129140163, 34359738368, 37
Offset: 0
a(2)=3 noting that 100! is a multiple of 3^48 and 48 is almost 100/2.
A141055
The n-th differences of the row A141045(n,.).
Original entry on oeis.org
-1, -2, -60, -120, -5040, -10080, -302400, -604800, -39916800, -79833600, -217945728000, -435891456000, -2615348736000, -5230697472000, -2667655710720000, -5335311421440000, -4257578514309120000, -8515157028618240000, -2810001819444019200000
Offset: 0
The first differences of A141045(2,.) are 11-(-19)=30 and -19-11 = -30. The 2nd difference is a(2)= -30-30= -60.
-
a[n_] := a[n] = a[n-1]*If[OddQ[n], 2, Denominator[BernoulliB[n+2]]]; a[0]=-1; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 17 2014 *)
-
a(n)=if(n,my(pr=a(n-1));fordiv(n+2,d,if(isprime(d+1),pr*=d+1));pr,-1) \\ Charles R Greathouse IV, Jul 08 2011
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 3, 3, 5, 5, 5, 7, 6, 6, 7, 8, 6, 9, 11, 10, 9, 10, 11, 11, 11, 14, 13, 15, 21, 22, 19, 20, 19, 20, 19, 20, 21, 18, 21, 23, 20, 22, 23, 27, 29, 27, 33, 30, 27, 29, 31, 32, 36, 38, 35, 35, 39, 37, 35, 34, 41, 43, 46, 47, 42, 40, 39, 42, 46, 46, 53, 52, 45, 46, 50, 50, 56, 55
Offset: 0
-
A091137 := proc(n) local a,p ; a := 1 ; p := 2 ; while floor(n/(p-1)) > 0 do a := a*p^floor(n/(p-1)) ; p := nextprime(p) ; od: RETURN(a) ; end:
A140783 := proc(n) add(i,i=convert(A091137(n),base,10)) ; end:
A157524 := proc(n) A140783(n+4)/9; end: seq(A157524(n),n=0..120) ; # R. J. Mathar, Apr 10 2009
A165823
Large denominators of Bernoulli numbers. Mix A002445, 2*A141421 .
Original entry on oeis.org
1, 2, 6, 24, 30, 1440, 42, 120960, 30, 7257600, 66, 958003200, 2730, 5230697472000, 6, 62768369664000, 510, 64023737057280000
Offset: 0
A238157
Reduced denominators of integral of the Stirling numbers of first kind.
Original entry on oeis.org
1, 1, 2, 1, 2, 3, 1, 1, 1, 4, 1, 1, 3, 2, 5, 1, 1, 3, 4, 1, 6, 1, 1, 3, 4, 1, 2, 7, 1, 1, 1, 1, 1, 6, 1, 8, 1, 1, 1, 1, 5, 3, 1, 2, 9, 1, 1, 1, 1, 5, 2, 1, 4, 1, 10, 1, 1, 1, 1, 1, 2, 1, 4, 3, 2, 11, 1, 1, 1, 1, 1, 3, 1, 8, 3, 1, 1, 12
Offset: 0
Denominators triangle (a(n)):
1,
1, 2
1, 2, 3,
1, 1, 1, 4,
1, 1, 3, 2, 5,
1, 1, 3, 4, 1, 6,
1, 1, 3, 4, 1, 2, 7,
etc.
The Least Common Multiples are A002790. The second column is A141044(n).
- P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Centre de Calcul Scientifique de l'Armement, Arcueil, 1969 (see array p. 56).
- N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924
-
Table[StirlingS1[n, k]/(k+1) // Denominator, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2014 *)
Original entry on oeis.org
1, 2, 12, 24, 144, 288, 1728, 3456, 20736, 41472, 248832, 497664, 2985984, 5971968, 35831808, 71663616, 429981696, 859963392, 5159780352, 10319560704, 61917364224, 123834728448, 743008370688, 1486016741376, 8916100448256, 17832200896512, 106993205379072, 213986410758144
Offset: 0
-
LinearRecurrence[{0, 12}, {1, 2}, 30] (* Paolo Xausa, Jan 29 2024 *)
A235936
Triangle of numerators of the unreduced coefficients of a numerical integration for a prediction Adams method.
Original entry on oeis.org
1, 1, 1, 5, 8, -1, 9, 19, -5, 1, 251, 646, -264, 106, -19, 475, 1427, -798, 482, -173, 27, 19087, 65112, -46461, 37504, -20211, 6312, -863, 36799, 139849, -121797, 123133, -88547, 41499, -11351, 1375
Offset: 0
Triangle starts:
1;
1, 1;
5, 8, -1;
9, 19, -5, 1;
251, 646, -264, 106, -19;
...
Numerators of
b(0,0)=1, b(1,0)=-(1/2-1)=1/2, b(1,1)=1/2, b(2,0)=(1/3-3/2+2)/2=5/12, b(2,1)=-(1/3-1)=2/3=8/12, b(2,2)=(1/3-1/2)/2=-1/12.
- P. Curtz, Intégration numérique des systèmes différentiels à conditions initiales, Note 12, Centre de Calcul Scientifique de l'Armement, Arcueil, (now DGA Maitrise de l'Information 35174 Bruz), 1969, see page 45.
Comments