cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A281482 a(n) = 2^(n + 1) * (2^n + 1) - 1.

Original entry on oeis.org

3, 11, 39, 143, 543, 2111, 8319, 33023, 131583, 525311, 2099199, 8392703, 33562623, 134234111, 536903679, 2147549183, 8590065663, 34360000511, 137439477759, 549756862463, 2199025352703, 8796097216511, 35184380477439, 140737505132543, 562949986975743
Offset: 0

Views

Author

Jaroslav Krizek, Jan 22 2017

Keywords

Crossrefs

Similar sequences: A085601 (2^(n + 1) * (2^n + 1) + 1), A092431 (2^(n - 1) * (2^n + 1) - 1), A092440 (2^(n + 1) * (2^n - 1) + 1), A129868 (2^(n - 1) * (2^n - 1) - 1), A134169 (2^(n - 1) * (2^n - 1) + 1), A267816 (2^(n + 1) * (2^n - 1) - 1), A281481 (2^(n - 1) * (2^n + 1) + 1).

Programs

  • Magma
    [2^(n + 1) * (2^n + 1) - 1: n in [0..200]];
    
  • PARI
    Vec((3 - 10*x + 4*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 22 2017

Formula

From Colin Barker, Jan 22 2017: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
G.f.: (3 - 10*x + 4*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
(End)

A006598 Numbers n such that 2^(2n+1) - 2^(n+1) + 1 is a prime.

Original entry on oeis.org

1, 3, 23, 36, 39, 56, 75, 83, 119, 120, 176, 183, 228, 683, 1520
Offset: 1

Views

Author

Keywords

Comments

These numbers satisfy A100014(n)=2. - Michel Marcus, Mar 07 2013

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007670.
Indices of primes in A092440. For the actual primes see A325914.

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 2^(2n + 1) - 2^(n + 1) + 1 ], Print[n] ], {n, 1, 4000} ]

A250197 Numbers k such that the left Aurifeuillian primitive part of 2^k+1 is prime.

Original entry on oeis.org

10, 14, 18, 22, 26, 30, 42, 54, 58, 66, 70, 86, 94, 98, 106, 110, 126, 130, 138, 146, 158, 174, 186, 210, 222, 226, 258, 302, 334, 434, 462, 478, 482, 522, 566, 602, 638, 706, 734, 750, 770, 782, 914, 1062, 1086, 1114, 1126, 1226, 1266, 1358, 1382, 1434, 1742, 1926
Offset: 1

Views

Author

Eric Chen, Jan 18 2015

Keywords

Comments

All terms are congruent to 2 modulo 4.
Phi_n(x) is the n-th cyclotomic polynomial.
Numbers n such that Phi_{2nL(n)}(2) is prime.
Let J(n) = 2^n+1, J*(n) = the primitive part of 2^n+1, this is Phi_{2n}(2).
Let L(n) = the Aurifeuillian L-part of 2^n+1, L(n) = 2^(n/2) - 2^((n+2)/4) + 1 for n congruent to 2 (mod 4).
Let L*(n) = GCD(L(n), J*(n)).
This sequence lists all n such that L*(n) is prime.

Examples

			14 is in this sequence because the left Aurifeuillian primitive part of 2^14+1 is 113, which is prime.
34 is not in this sequence because the left Aurifeuillian primitive part of 2^34+1 is 130561, which equals 137 * 953 and is not prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2000], Mod[#, 4] == 2 && PrimeQ[GCD[2^(#/2) - 2^((#+2)/4) + 1, Cyclotomic[2*#, 2]]] &]
  • PARI
    isok(n) = isprime(gcd(2^(n/2) - 2^((n+2)/4) + 1, polcyclo(2*n, 2))); \\ Michel Marcus, Jan 27 2015

A267816 Decimal representation of the n-th iteration of the "Rule 221" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 3, 23, 111, 479, 1983, 8063, 32511, 130559, 523263, 2095103, 8384511, 33546239, 134201343, 536838143, 2147418111, 8589803519, 34359476223, 137438429183, 549754765311, 2199021158399, 8796088827903, 35184363700223, 140737471578111, 562949919866879
Offset: 0

Views

Author

Robert Price, Jan 20 2016

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A267814.
Similar entries: A085601 (2^(n + 1) * (2^n + 1) + 1), A092431 (2^(n - 1) * (2^n + 1) - 1), A092440 (2^(n + 1) * (2^n - 1) + 1), A129868 (2^(n - 1) * (2^n - 1) - 1), A134169 (2^(n - 1) * (2^n - 1) + 1), A281481 (2^(n - 1) * (2^n + 1) + 1), A281482 (2^(n + 1) * (2^n + 1) - 1). - Jaroslav Krizek, Jan 22 2017

Programs

  • Mathematica
    rule=221; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* Decimal Representation of Rows *)

Formula

Conjectures from Colin Barker, Jan 22 2016 and Apr 16 2019: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>3.
G.f.: (1-4*x+16*x^2-16*x^3) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
a(n) = 2^(n + 1) * (2^n - 1) - 1, for n > 0. - Jaroslav Krizek, Jan 22 2017

A281481 a(n) = 2^(n - 1) * (2^n + 1) + 1.

Original entry on oeis.org

2, 4, 11, 37, 137, 529, 2081, 8257, 32897, 131329, 524801, 2098177, 8390657, 33558529, 134225921, 536887297, 2147516417, 8590000129, 34359869441, 137439215617, 549756338177, 2199024304129, 8796095119361, 35184376283137, 140737496743937, 562949970198529
Offset: 0

Views

Author

Jaroslav Krizek, Jan 22 2017

Keywords

Crossrefs

Similar sequences: A085601 (2^(n + 1) * (2^n + 1) + 1), A092431 (2^(n - 1) * (2^n + 1) - 1), A092440 (2^(n + 1) * (2^n - 1) + 1), A129868 (2^(n - 1) * (2^n - 1) - 1), A134169 (2^(n - 1) * (2^n - 1) + 1), A267816 (2^(n + 1) * (2^n - 1) - 1), A281482 (2^(n + 1) * (2^n + 1) - 1).
Cf. A278930.

Programs

  • Magma
    [2^(n - 1) * (2^n + 1) + 1: n in [0..200]];
    
  • PARI
    Vec((2 - 10*x + 11*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ Colin Barker, Jan 22 2017

Formula

From Colin Barker, Jan 22 2017: (Start)
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.
G.f.: (2 - 10*x + 11*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).
(End)
a(n) = A278930(n - 2) for n >= 7. - Georg Fischer, Mar 26 2019

A220980 a(n) = 5^(4n+2) + 5^(3n+2) + 3 * 5^(2n+1) + 5^(n+1) + 1: the right Aurifeuillian factor of 5^(10n+5) - 1.

Original entry on oeis.org

71, 19151, 10165751, 6152578751, 3820806643751, 2384948876968751, 1490211490478593751, 931334495635986718751, 582078099253082277343751, 363798066973743438730468751, 227373698726297855377246093751, 142108550062403118610382324218751
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220979.

Crossrefs

Programs

  • Mathematica
    Table[5^(4n+2) + 5^(3n+2) + 3 * 5^(2n+1) + 5^(n+1) + 1, {n, 0, 20}]

Formula

Aurifeuillian factorization: 5^(10n+5) - 1 = (5^(2n+1) - 1) * A220979(n) * a(n).
G.f.: -(27734375*x^4-22687500*x^3+2417450*x^2-36300*x+71) / ((x-1)*(5*x-1)*(25*x-1)*(125*x-1)*(625*x-1)). [Colin Barker, Jan 03 2013]

A220981 a(n) = 6^(4n+2) - 6^(3n+2) + 3 * 6^(2n+1) - 6^(n+1) + 1: the left Aurifeuillian factor of 6^(12n+6) + 1.

Original entry on oeis.org

13, 39493, 58809673, 78002205553, 101481622729633, 131604778271166913, 170578072060319947393, 221073129991920857571073, 286511629376393032228157953, 371319255900007820952456748033, 481229795439713382306649129101313
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220982.

Crossrefs

Programs

  • Mathematica
    Table[6^(4n+2) - 6^(3n+2) + 3 * 6^(2n+1) - 6^(n+1) + 1, {n, 0, 20}]
    LinearRecurrence[{1555,-345210,12427560,-72550080,60466176},{13,39493,58809673,78002205553,101481622729633},20] (* Harvey P. Dale, Oct 01 2021 *)

Formula

Aurifeuillian factorization: 6^(12n+6) + 1 = (6^(4n+2) + 1) * a(n) * A220982(n).
G.f.: -(21835008*x^4+24984288*x^3+1885788*x^2+19278*x+13) / ((x-1)*(6*x-1)*(36*x-1)*(216*x-1)*(1296*x-1)). [Colin Barker, Jan 03 2013]

A220982 a(n) = 6^(4n+2) + 6^(3n+2) + 3 * 6^(2n+1) + 6^(n+1) + 1: the right Aurifeuillian factor of 6^(12n+6) + 1.

Original entry on oeis.org

97, 55117, 62169337, 78727802257, 101638351073377, 131638631590149697, 170585384377200633217, 221074709452366968135937, 286511970539849391404729857, 371319329591314394530363646977, 481229811357035602199451623479297
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220981.

Crossrefs

Programs

  • Mathematica
    Table[6^(4n+2) + 6^(3n+2) + 3 * 6^(2n+1) + 6^(n+1) + 1, {n, 0, 20}]

Formula

Aurifeuillian factorization: 6^(12n+6) + 1 = (6^(4n+2) + 1) * A220981(n) * a(n).
G.f.: -(162922752*x^4-124050528*x^3+9947772*x^2-95718*x+97) / ((x-1)*(6*x-1)*(36*x-1)*(216*x-1)*(1296*x-1)). [Colin Barker, Jan 03 2013]

A220987 The left Aurifeuillian factor of 11^(22n+11) + 1.

Original entry on oeis.org

58367, 3812903020530517, 107454987376543082369146967, 2808133028073215608147547774721982717, 72885505321551844061773948114862247606146502767, 1890579685660625069233746109183146734516524279847333062117
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding right Aurifeuillian factor is A220988.

Crossrefs

Programs

  • Mathematica
    Table[z = 11^n; 161051 z^10 - 161051 z^9 + 73205 z^8 - 14641 z^7 - 1331 z^6 + 1331 z^5 - 121 z^4 - 121 z^3 + 55 z^2 - 11 z + 1, {n, 0, 10}]

Formula

a(n) = 161051 z^10 - 161051 z^9 + 73205 z^8 - 14641 z^7 - 1331 z^6 + 1331 z^5 - 121 z^4 - 121 z^3 + 55 z^2 - 11 z + 1 with z = 11^n.
Aurifeuillian factorization: 11^(22n+11) + 1 = (11^(2n+1) + 1) * a(n) * A220988(n).

A220988 The right Aurifeuillian factor of 11^(22n+11) + 1.

Original entry on oeis.org

407353, 4572972882642803, 109245858982819139102535553, 2812355783638980226466572392952970603, 72895462357781065526518523423275265184080402953, 1890603163831201090586603020695655490130990020251181357603
Offset: 0

Views

Author

Stuart Clary, Dec 27 2012

Keywords

Comments

The corresponding left Aurifeuillian factor is A220987.

Crossrefs

Programs

  • Mathematica
    Table[z = 11^n; 161051 z^10 + 161051 z^9 + 73205 z^8 + 14641 z^7 - 1331 z^6 - 1331 z^5 - 121 z^4 + 121 z^3 + 55 z^2 + 11 z + 1, {n, 0, 10}]

Formula

a(n) = 161051 z^10 + 161051 z^9 + 73205 z^8 + 14641 z^7 - 1331 z^6 - 1331 z^5 - 121 z^4 + 121 z^3 + 55 z^2 + 11 z + 1 with z = 11^n.
Aurifeuillian factorization: 11^(22n+11) + 1 = (11^(2n+1) + 1) * A220987(n) * a(n).
Previous Showing 11-20 of 28 results. Next