A373872
a(n) = Sum_{k=1..n} (-1)^(n-k) * k! * k^(n-3) * Stirling2(n,k).
Original entry on oeis.org
0, 1, 0, 1, 15, 391, 16275, 999391, 85314915, 9682617631, 1411532175075, 257220473522431, 57317980108103715, 15338554965273810271, 4855172557420679314275, 1794588990417909081447871, 766066194581899382513514915, 374061220058388896558805473311
Offset: 0
-
a(n) = sum(k=1, n, (-1)^(n-k)*k!*k^(n-3)*stirling(n, k, 2));
A382678
a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+3,3) * Stirling2(n+1,k+1)^2.
Original entry on oeis.org
1, 5, 77, 2357, 118061, 8712245, 886143917, 118592620277, 20176999414061, 4249819031692085, 1084956766012858157, 329975948760472311797, 117851658189070970988461, 48830366210401091606537525, 23228207308210113849419226797, 12571433948267218576823401692917
Offset: 0
-
a(n) = sum(k=0, n, k!^2*binomial(k+3, 3)*stirling(n+1, k+1, 2)^2);
A244437
E.g.f.: exp( Sum_{n>=1} (1 - exp(-n*x))^n / n ).
Original entry on oeis.org
1, 1, 4, 41, 845, 30012, 1650475, 130216865, 13944696526, 1945060435587, 342412144747677, 74216506678085290, 19414505134246518741, 6029823819095965829293, 2193174302711080501699684, 923346371767630311443639677, 445468655004100653462280596881, 244137607569262412209821327718964
Offset: 0
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 41*x^3/3! + 845*x^4/4! + 30012*x^5/5! +...
where
log(A(x)) = (1-exp(-x)) + (1-exp(-2*x))^2/2 + (1-exp(-3*x))^3/3 + (1-exp(-4*x))^4/4 + (1-exp(-5*x))^5/5 + (1-exp(-6*x))^6/6 +...
Explicitly,
log(A(x)) = x + 3*x^2/2! + 31*x^3/3! + 675*x^4/4! + 25231*x^5/5! + 1441923*x^6/6! +...+ A092552(n)*x^n/n! +...
-
max = 20; s = Exp[Sum[(1 - Exp[-n x])^n/n, {n, 1, max}]] + O[x]^max; CoefficientList[s, x] Range[0, max-1]! (* Jean-François Alcover, Mar 31 2016 *)
-
{a(n) = n!*polcoeff( exp( sum(m=1,n+1, (1 - exp(-m*x +x*O(x^n)))^m / m) ), n)}
for(n=0,20,print1(a(n),", "))
A306267
Number of permutations of [n] within distance floor(n/2) of a fixed permutation.
Original entry on oeis.org
1, 1, 2, 3, 14, 31, 230, 675, 6902, 25231, 329462, 1441923, 22934774, 116914351, 2193664790, 12764590275, 276054834902, 1805409270031, 44222780245622, 321113303226243, 8787513806478134, 70146437009397871, 2121181056663291350, 18462286083671614275
Offset: 0
A243807
G.f.: exp( Integral Sum_{n>=1} n!*n^(n-1)*x^(n-1) / Product_{k=1..n} (1+k*n*x) dx ).
Original entry on oeis.org
1, 1, 2, 12, 181, 5237, 245776, 16954562, 1612833457, 202233823341, 32315380158578, 6409484794915012, 1544967825490593319, 444799853104579872759, 150750913498484630903772, 59410000121654748323276898, 26938215605761889373324449091, 13925028099872858626544313312207
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 181*x^4 + 5237*x^5 + 245776*x^6 +...
where the logarithmic derivative is given by the series:
A'(x)/A(x) = 1/(1+x) + 2!*2^1*x/((1+1*2*x)*(1+2*2*x)) + 3!*3^2*x^2/((1+1*3*x)*(1+2*3*x)*(1+3*3*x)) + 4!*4^3*x^3/((1+1*4*x)*(1+2*4*x)*(1+3*4*x)*(1+4*4*x)) + 5!*5^4*x^4/((1+1*5*x)*(1+2*5*x)*(1+3*5*x)*(1+4*5*x)*(1+5*5*x)) +...
Explicitly,
A'(x)/A(x) = 1 + 3*x + 31*x^2 + 675*x^3 + 25231*x^4 + 1441923*x^5 + 116914351*x^6 +...+ A092552(n+1)*x^n +...
compare to:
G(x) = x + 3*x^2/2! + 31*x^3/3! + 675*x^4/4! + 25231*x^5/5! + 1441923*x^6/6! +...+ A092552(n)*x^n/n! +...
where G(x) = (1-exp(-x)) + (1-exp(-2*x))^2/2 + (1-exp(-3*x))^3/3 + (1-exp(-4*x))^4/4 +...
-
{a(n)=local(A=1+x); A=exp(intformal(sum(m=1, n+1, m^(m-1)*m!*x^(m-1)/prod(k=1, m, 1+m*k*x +x*O(x^n))))); polcoeff(A,n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From g.f. exp( Sum_{n>=1} A092552(n)*x^n/n ): */
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{A092552(n)=if(n<=0, 0, sum(k=1, n, k!*(k-1)! * Stirling2(n, k)^2))}
{a(n)=polcoeff(exp(sum(m=1,n,A092552(m)*x^m/m) +x*O(x^n)),n)}
for(n=0,20,print1(a(n),", "))
A255192
Triangle of number of connected subgraphs of K(n,n) with m edges.
Original entry on oeis.org
1, 4, 1, 81, 78, 36, 9, 1, 4096, 8424, 9552, 7464, 4272, 1812, 560, 120, 16, 1, 390625, 1359640, 2696200, 3880300, 4394600, 4059000, 3111140, 1994150, 1070150, 478800, 176900, 53120, 12650, 2300, 300, 25, 1, 60466176, 314452800, 939988800, 2075760000
Offset: 1
Triangle begins:
----|------------------------------------------------------------
n\m | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
----|------------------------------------------------------------
1 | 1
2 | - - 4 1
3 | - - - - 81 78 36 9 1
4 | - - - - - - 4096 8424 9552 7464 4272 1812 560 120 16 1
-
from math import comb as binomial
def f(x, a, b, k):
if b == k == 0:
return 1
if b == 0 or k == 0:
return 0
if x == a:
return sum(binomial(a, n) * f(x, x, b - 1, k - n) for n in range(1, a + 1))
return sum(binomial(b, n) * f(x, x, n, k2) * f(n, b, a - x, k - k2)
for n in range(1, b + 1) for k2 in range(0, k + 1) )
def a(n, m):
return f(1, n, n, m)
for n in range(1, 5):
print([a(n, m) for m in range(1, n * n + 1)])
A382827
a(n) = Sum_{k=0..n} k! * (k+1)! * Stirling1(n+1,k+1)^2.
Original entry on oeis.org
1, 3, 34, 854, 37556, 2546852, 246113904, 32104625520, 5433891955968, 1157778241057152, 303197684900579712, 95717977509042032256, 35847800701044816248064, 15713483696924130220098816, 7969364997624587289470810112, 4630203661005094483980386924544
Offset: 0
-
a(n) = sum(k=0, n, k!*(k+1)!*stirling(n+1, k+1, 1)^2);
A256286
Number of Hamiltonian cycles in a tournament on 3n vertices constructed by taking 3 copies of a transitive tournament on n vertices and placing each copy on a vertex of a directed 3-cycle, with all edges between the copies oriented in the direction of the cycle.
Original entry on oeis.org
1, 5, 181, 20381, 4940101, 2230319165, 1692864345061, 1997649164976701, 3461226344139932101, 8430034728440212411325, 27875832970537774479832741, 121651171242426267003975420221, 684351364639262056751911086836101, 4865203490721997132612204548628407485
Offset: 1
Comments