cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A373872 a(n) = Sum_{k=1..n} (-1)^(n-k) * k! * k^(n-3) * Stirling2(n,k).

Original entry on oeis.org

0, 1, 0, 1, 15, 391, 16275, 999391, 85314915, 9682617631, 1411532175075, 257220473522431, 57317980108103715, 15338554965273810271, 4855172557420679314275, 1794588990417909081447871, 766066194581899382513514915, 374061220058388896558805473311
Offset: 0

Views

Author

Seiichi Manyama, Jun 20 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=1, n, (-1)^(n-k)*k!*k^(n-3)*stirling(n, k, 2));

Formula

E.g.f.: Sum_{k>=1} (1 - exp(-k*x))^k / k^3.
Sum_{k>=0} a(k+2) * x^k/k! = Sum_{k>=0} k * (1 - exp(-k*x))^k.

A382678 a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+3,3) * Stirling2(n+1,k+1)^2.

Original entry on oeis.org

1, 5, 77, 2357, 118061, 8712245, 886143917, 118592620277, 20176999414061, 4249819031692085, 1084956766012858157, 329975948760472311797, 117851658189070970988461, 48830366210401091606537525, 23228207308210113849419226797, 12571433948267218576823401692917
Offset: 0

Views

Author

Seiichi Manyama, Apr 03 2025

Keywords

Crossrefs

Main diagonal of A382674.

Programs

  • PARI
    a(n) = sum(k=0, n, k!^2*binomial(k+3, 3)*stirling(n+1, k+1, 2)^2);

Formula

a(n) = (n!)^2 * [(x*y)^n] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^4.

A244437 E.g.f.: exp( Sum_{n>=1} (1 - exp(-n*x))^n / n ).

Original entry on oeis.org

1, 1, 4, 41, 845, 30012, 1650475, 130216865, 13944696526, 1945060435587, 342412144747677, 74216506678085290, 19414505134246518741, 6029823819095965829293, 2193174302711080501699684, 923346371767630311443639677, 445468655004100653462280596881, 244137607569262412209821327718964
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2014

Keywords

Comments

Compare to: exp( Sum_{n>=1} (1 - exp(-x))^n/n ) = 1/(2-exp(x)), the e.g.f. of Fubini numbers (A000670).

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 41*x^3/3! + 845*x^4/4! + 30012*x^5/5! +...
where
log(A(x)) = (1-exp(-x)) + (1-exp(-2*x))^2/2 + (1-exp(-3*x))^3/3 + (1-exp(-4*x))^4/4 + (1-exp(-5*x))^5/5 + (1-exp(-6*x))^6/6 +...
Explicitly,
log(A(x)) = x + 3*x^2/2! + 31*x^3/3! + 675*x^4/4! + 25231*x^5/5! + 1441923*x^6/6! +...+ A092552(n)*x^n/n! +...
		

Crossrefs

Programs

  • Mathematica
    max = 20; s = Exp[Sum[(1 - Exp[-n x])^n/n, {n, 1, max}]] + O[x]^max; CoefficientList[s, x] Range[0, max-1]! (* Jean-François Alcover, Mar 31 2016 *)
  • PARI
    {a(n) = n!*polcoeff( exp( sum(m=1,n+1, (1 - exp(-m*x +x*O(x^n)))^m / m) ), n)}
    for(n=0,20,print1(a(n),", "))

Formula

E.g.f.: exp( Sum_{n>=1} A092552(n)*x^n/n! ), where A092552(n) = Sum_{k=1..n} k!*(k-1)! * Stirling2(n, k)^2.
a(n) ~ (n!)^2 / (2 * sqrt(Pi) * sqrt(1-log(2)) * n^(3/2) * log(2)^(2*n)). - Vaclav Kotesovec, Aug 21 2014

A306267 Number of permutations of [n] within distance floor(n/2) of a fixed permutation.

Original entry on oeis.org

1, 1, 2, 3, 14, 31, 230, 675, 6902, 25231, 329462, 1441923, 22934774, 116914351, 2193664790, 12764590275, 276054834902, 1805409270031, 44222780245622, 321113303226243, 8787513806478134, 70146437009397871, 2121181056663291350, 18462286083671614275
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2019

Keywords

Crossrefs

Cf. A306209.
Shifted bisections give: A048163 (even part), A092552 (odd part).

Formula

a(n) = A306209(n,floor(n/2)).

A243807 G.f.: exp( Integral Sum_{n>=1} n!*n^(n-1)*x^(n-1) / Product_{k=1..n} (1+k*n*x) dx ).

Original entry on oeis.org

1, 1, 2, 12, 181, 5237, 245776, 16954562, 1612833457, 202233823341, 32315380158578, 6409484794915012, 1544967825490593319, 444799853104579872759, 150750913498484630903772, 59410000121654748323276898, 26938215605761889373324449091, 13925028099872858626544313312207
Offset: 0

Views

Author

Paul D. Hanna, Jun 11 2014

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 181*x^4 + 5237*x^5 + 245776*x^6 +...
where the logarithmic derivative is given by the series:
A'(x)/A(x) = 1/(1+x) + 2!*2^1*x/((1+1*2*x)*(1+2*2*x)) + 3!*3^2*x^2/((1+1*3*x)*(1+2*3*x)*(1+3*3*x)) + 4!*4^3*x^3/((1+1*4*x)*(1+2*4*x)*(1+3*4*x)*(1+4*4*x)) + 5!*5^4*x^4/((1+1*5*x)*(1+2*5*x)*(1+3*5*x)*(1+4*5*x)*(1+5*5*x)) +...
Explicitly,
A'(x)/A(x) = 1 + 3*x + 31*x^2 + 675*x^3 + 25231*x^4 + 1441923*x^5 + 116914351*x^6 +...+ A092552(n+1)*x^n +...
compare to:
G(x) = x + 3*x^2/2! + 31*x^3/3! + 675*x^4/4! + 25231*x^5/5! + 1441923*x^6/6! +...+ A092552(n)*x^n/n! +...
where G(x) = (1-exp(-x)) + (1-exp(-2*x))^2/2 + (1-exp(-3*x))^3/3 + (1-exp(-4*x))^4/4 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); A=exp(intformal(sum(m=1, n+1, m^(m-1)*m!*x^(m-1)/prod(k=1, m, 1+m*k*x +x*O(x^n))))); polcoeff(A,n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From g.f. exp( Sum_{n>=1} A092552(n)*x^n/n ): */
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {A092552(n)=if(n<=0, 0, sum(k=1, n, k!*(k-1)! * Stirling2(n, k)^2))}
    {a(n)=polcoeff(exp(sum(m=1,n,A092552(m)*x^m/m) +x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))

Formula

G.f.: exp( Sum_{n>=1} A092552(n)*x^n/n ) where Sum_{n>=1} A092552(n)*x^n/n! = Sum_{n>=1} (1 - exp(-n*x))^n / n.

A255192 Triangle of number of connected subgraphs of K(n,n) with m edges.

Original entry on oeis.org

1, 4, 1, 81, 78, 36, 9, 1, 4096, 8424, 9552, 7464, 4272, 1812, 560, 120, 16, 1, 390625, 1359640, 2696200, 3880300, 4394600, 4059000, 3111140, 1994150, 1070150, 478800, 176900, 53120, 12650, 2300, 300, 25, 1, 60466176, 314452800, 939988800, 2075760000
Offset: 1

Views

Author

Thomas Dybdahl Ahle, Feb 16 2015

Keywords

Comments

m ranges from 2n-1 to n^2.
First column is A068087.

Examples

			Triangle begins:
----|------------------------------------------------------------
n\m |  1 2 3 4  5  6    7    8    9   10   11   12  13  14 15 16
----|------------------------------------------------------------
1   |  1
2   |  - - 4 1
3   |  - - - - 81 78   36    9    1
4   |  - - - -  -  - 4096 8424 9552 7464 4272 1812 560 120 16  1
		

Crossrefs

Cf. A005333 (row sums?).

Programs

  • Python
    from math import comb as binomial
    def f(x, a, b, k):
        if b == k == 0:
            return 1
        if b == 0 or k == 0:
            return 0
        if x == a:
            return sum(binomial(a, n) * f(x, x, b - 1, k - n) for n in range(1, a + 1))
        return sum(binomial(b, n) * f(x, x, n, k2) * f(n, b, a - x, k - k2)
            for n in range(1, b + 1) for k2 in range(0, k + 1) )
    def a(n, m):
        return f(1, n, n, m)
    for n in range(1, 5):
        print([a(n, m) for m in range(1, n * n + 1)])

Formula

Sum(k>=0, T(n,k)*(-1)^k ) = A136126(2*n-1,n-1) = A092552(n+1), alternating row sums.

A382827 a(n) = Sum_{k=0..n} k! * (k+1)! * Stirling1(n+1,k+1)^2.

Original entry on oeis.org

1, 3, 34, 854, 37556, 2546852, 246113904, 32104625520, 5433891955968, 1157778241057152, 303197684900579712, 95717977509042032256, 35847800701044816248064, 15713483696924130220098816, 7969364997624587289470810112, 4630203661005094483980386924544
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2025

Keywords

Crossrefs

Main diagonal of A382824.

Programs

  • PARI
    a(n) = sum(k=0, n, k!*(k+1)!*stirling(n+1, k+1, 1)^2);

Formula

a(n) = (n!)^2 * [(x*y)^n] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y))^2 ).
a(n) = (n!)^2 * [(x*y)^n] 1 / ( (1+x) * (1+y) * (1 - log(1+x) * log(1+y))^2 ).

A256286 Number of Hamiltonian cycles in a tournament on 3n vertices constructed by taking 3 copies of a transitive tournament on n vertices and placing each copy on a vertex of a directed 3-cycle, with all edges between the copies oriented in the direction of the cycle.

Original entry on oeis.org

1, 5, 181, 20381, 4940101, 2230319165, 1692864345061, 1997649164976701, 3461226344139932101, 8430034728440212411325, 27875832970537774479832741, 121651171242426267003975420221, 684351364639262056751911086836101, 4865203490721997132612204548628407485
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = Sum_{k=1..n} (S(n,k)*k!)^3/k, where S(n,k) is the Stirling number of the second kind (A048993, Stirling set numbers).

Extensions

Offset changed to 1 by Georg Fischer, Jun 20 2022
Previous Showing 11-18 of 18 results.