A192417
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,0), (2,2), (3,3).
Original entry on oeis.org
1, 2, 7, 27, 107, 436, 1810, 7609, 32288, 138009, 593311, 2562725, 11112720, 48347332, 210936119, 922550622, 4043488129, 17755735241, 78099099877, 344033901804, 1517535718392, 6701979806379, 29630948706756, 131136723532257, 580901892464599, 2575423975663301
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1) )); // G. C. Greubel, Apr 29 2019
-
CoefficientList[Series[1/Sqrt[x^6+2x^5+x^4-2x^3-2x^2-4x+1], {x, 0, 25}], x] (* Michael De Vlieger, Oct 08 2016 *)
-
/* same as in A092566 but use */
steps=[[0,1], [1,0], [2,2], [3,3]];
/* Joerg Arndt, Jun 30 2011 */
-
my(x='x+O('x^30)); Vec(1/sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1)) \\ G. C. Greubel, Apr 29 2019
-
(1/sqrt(x^6+2*x^5+x^4-2*x^3-2*x^2-4*x+1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Apr 29 2019
A192446
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (3,0), (0,1), (0,3).
Original entry on oeis.org
1, 2, 6, 30, 154, 768, 3906, 20232, 105750, 556328, 2943432, 15646932, 83500126, 447057380, 2400249624, 12918250836, 69674241654, 376489511460, 2037768450480, 11045915485740, 59955446568276, 325821729044784, 1772588671356204, 9653187691115640, 52617711157401186, 287051310425050668
Offset: 0
-
REL := 3*s^2*x^2-(1-2*s^2+2*s^3)*x-s*(s^3+2*s^2+s-1);
ogf := sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3);
series(eval(ogf, s=RootOf(REL,s)),x=0,30); # Mark van Hoeij, Apr 17 2013
# second Maple program:
b:= proc(x, y) option remember; `if`(y=0, 1, add((p->
`if`(p[1]<0, 0, b(p[1], p[2])))(sort([x, y]-h)),
h=[[1, 0], [0, 1], [3, 0], [0, 3]]))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Dec 28 2018
-
a[0, 0] = 1; a[n_, k_] /; n >= 0 && k >= 0 := a[n, k] = a[n, k-1] + a[n, k-3] + a[n-1, k] + a[n-3, k]; a[, ] = 0;
a[n_] := a[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, Oct 06 2019 *)
-
/* same as in A092566 but use */
steps=[[1,0], [3,0], [0,1], [0,3]];
/* Joerg Arndt, Jun 30 2011 */
-
seq(N) = {
my(x='x + O('x^N), d=16*x^6 + 16*x^5 + 16*x^4 - 8*x^3 - 4*x^2 + 1,
s=serreverse((1 - 2*x^2 + 2*x^3 - sqrt(d))/(6*x^2)));
Vec(sqrt((8*s^2*(x*(1-8*s^2-4*s^3)-2*s^4-4*s^3-8*s^2+2*s+3)/3-1)/(4*x^3+8*x^2+4*x-1))/(1-4*s^3));
};
seq(26) \\ Gheorghe Coserea, Aug 06 2018
A191678
Number of lattice paths from (0,0) to (n,n) using steps (1,0), (1,1), (0,2), (2,2).
Original entry on oeis.org
1, 1, 5, 15, 62, 233, 937, 3729, 15121, 61492, 251942, 1036215, 4279754, 17731181, 73670725, 306823695, 1280574706, 5354602495, 22426876445, 94070238840, 395106054632, 1661489413472, 6994494531010, 29474635716345, 124319047552309, 524797934104312, 2217091297558466, 9373180869094923
Offset: 0
-
P := (4*x^6+12*x^5-20*x^3+27*x^2+12*x-4)*A^3-(3*x^2+3*x-3)*A+1;
Q := eval(P, A=A+1):
series(RootOf(Q,A)+1, x=0, 30); # Mark van Hoeij, Apr 17 2013
-
/* same as in A092566 but use */
steps=[[1,0], [1,1], [0,2], [2,2]];
/* Joerg Arndt, Jun 30 2011 */
Comments