cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A249283 Decimal expansion of K(3/4), where K is the complete elliptic integral of the first kind.

Original entry on oeis.org

2, 1, 5, 6, 5, 1, 5, 6, 4, 7, 4, 9, 9, 6, 4, 3, 2, 3, 5, 4, 3, 8, 6, 7, 4, 9, 9, 8, 8, 0, 0, 3, 2, 2, 0, 2, 8, 8, 6, 4, 1, 1, 0, 2, 1, 6, 4, 9, 2, 8, 2, 5, 3, 6, 0, 3, 6, 4, 9, 5, 8, 9, 1, 6, 5, 0, 0, 9, 6, 1, 6, 4, 4, 2, 2, 0, 6, 5, 6, 2, 8, 7, 6, 3, 4, 9, 6, 7, 8, 7, 5, 7, 8, 1, 4, 4, 5, 9, 0, 2, 5, 5
Offset: 1

Views

Author

Jean-François Alcover, Oct 24 2014

Keywords

Examples

			2.15651564749964323543867499880032202886411021649282536...
		

Crossrefs

Cf. A093341 (K(1/2)), A249282 (K(1/4)), A000796, A068521.

Programs

Formula

Equals Pi/agm(1, 2) = A000796 / A068521. - Amiram Eldar, Apr 28 2025

A257407 Decimal expansion of E(1/sqrt(2)) = 1.35064..., where E is the complete elliptic integral.

Original entry on oeis.org

1, 3, 5, 0, 6, 4, 3, 8, 8, 1, 0, 4, 7, 6, 7, 5, 5, 0, 2, 5, 2, 0, 1, 7, 4, 7, 3, 5, 3, 3, 8, 7, 2, 5, 8, 4, 1, 3, 4, 9, 5, 2, 2, 3, 6, 6, 9, 2, 4, 3, 5, 4, 5, 4, 5, 3, 2, 3, 2, 5, 3, 7, 0, 8, 8, 5, 7, 8, 7, 7, 8, 9, 0, 8, 3, 6, 1, 2, 7, 3, 6, 9, 0, 4, 0, 2, 3, 6, 0, 7, 7, 8, 2, 2, 4, 9, 1, 5, 6, 3, 6, 0, 9, 9, 4, 7
Offset: 1

Views

Author

Jean-François Alcover, Apr 22 2015

Keywords

Comments

This constant is sometimes expressed as E(1/2), with a different convention of argument (Cf. Mathematica).

Examples

			1.3506438810476755025201747353387258413495223669243545453232537...
		

References

  • Jonathan Borwein, David H. Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century, CRC Press (2008), p. 145.

Crossrefs

Programs

  • Maple
    evalf(EllipticE(1/sqrt(2)),120); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[EllipticE[1/2], 10, 106] // First

Formula

Equals (4*B^2 + Pi)/(4*sqrt(2)*B), where B is the lemniscate constant A076390.
Equals Pi^(3/2)/Gamma(1/4)^2 + Gamma(1/4)^2/(8*Pi^(1/2)).
Equals (agm(1,sqrt(2))+Pi/agm(1,sqrt(2)))/sqrt(8) = (A053004+A062539)/A010466. - Gleb Koloskov, Jun 29 2021

A263809 Decimal expansion of C_{1/2}, a constant related to Kolmogorov's inequalities.

Original entry on oeis.org

2, 7, 8, 6, 4, 0, 7, 8, 5, 9, 3, 7, 1, 3, 5, 3, 7, 1, 8, 3, 6, 8, 4, 9, 2, 5, 2, 0, 6, 5, 0, 7, 3, 6, 4, 8, 5, 3, 1, 4, 9, 6, 2, 4, 3, 5, 0, 3, 1, 2, 3, 5, 7, 5, 7, 9, 4, 8, 5, 6, 3, 2, 6, 3, 7, 6, 0, 6, 4, 8, 0, 2, 5, 1, 5, 0, 0, 7, 3, 2, 6, 1, 3, 5, 7, 2, 9, 4, 6, 5, 9, 7, 1, 5, 6, 1, 9, 1, 1, 1, 9, 9, 3, 1, 3
Offset: 1

Views

Author

Jean-François Alcover, Oct 27 2015

Keywords

Examples

			2.78640785937135371836849252065073648531496243503123575794856326376...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 7.7 Riesz-Kolmogorov Constants, p. 474.

Crossrefs

Programs

  • Mathematica
    RealDigits[Gamma[1/4]^2/(Pi*Gamma[3/4]^2), 10, 105] // First
  • PARI
    gamma(1/4)^2/(Pi*gamma(3/4)^2) \\ Michel Marcus, Oct 27 2015

Formula

C_{1/2} = gamma(1/4)^2/(Pi*gamma(3/4)^2).
Equals (1/Pi^2)*(integral_{0..Pi} sqrt(csc(t)) dt)^2.
Also equals (8/Pi^2)*A093341^2.

A276627 Decimal expansion of K(3-2*sqrt(2)), where K is the complete elliptic integral of the first kind.

Original entry on oeis.org

1, 5, 8, 2, 5, 5, 1, 7, 2, 7, 2, 2, 3, 7, 1, 5, 9, 1, 1, 8, 3, 3, 1, 3, 5, 0, 7, 1, 0, 7, 0, 4, 0, 9, 8, 7, 6, 5, 2, 9, 4, 8, 8, 1, 4, 9, 6, 1, 8, 7, 8, 9, 2, 4, 3, 4, 9, 7, 1, 6, 9, 4, 4, 8, 4, 7, 8, 2, 0, 8, 5, 3, 5, 1, 8, 6, 6, 6, 3, 5, 5, 1, 7, 3, 6, 2, 0, 9, 8, 1, 4, 0, 6, 5, 5, 4, 3, 2, 2, 2, 0, 0, 0, 4, 1
Offset: 1

Views

Author

Benedict W. J. Irwin, Sep 07 2016

Keywords

Comments

The modulus k=3-2*sqrt(2).
K(k_4) in the MathWorld link.

Examples

			1.58255172722371591183313507107040987652948814961878924349716944847...
		

Crossrefs

Cf. A157259 (for 3-2*sqrt(2)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); 2*(2+Sqrt(2))*Pi(R)^(3/2)/Gamma(-1/4)^2; // G. C. Greubel, Oct 08 2018
  • Maple
    evalf(2*(2+sqrt(2))*Pi^(3/2)/GAMMA(-1/4)^2,120); # Muniru A Asiru, Oct 08 2018
  • Mathematica
    RealDigits[N[EllipticK[(3 - 2 Sqrt[2])^2], 105]][[1]]
    RealDigits[2*(2+Sqrt[2])*Pi^(3/2)/Gamma[-1/4]^2, 10, 100][[1]] (* G. C. Greubel, Oct 08 2018 *)
  • PARI
    default(realprecision, 100); 2*(2+sqrt(2))*Pi^(3/2)/gamma(-1/4)^2 \\ G. C. Greubel, Oct 08 2018
    
  • PARI
    ellK(3-sqrt(8)) \\ Charles R Greathouse IV, Feb 05 2025
    

Formula

Equals 2*(2+sqrt(2))*Pi^(3/2)/Gamma(-1/4)^2.
Equals A174968 * A062539 / 2. - R. J. Mathar, Aug 18 2023
Equals A093341 * A201488 [Zucker]. - R. J. Mathar, Jun 24 2024

A371859 Decimal expansion of Integral_{x=0..oo} 1 / sqrt(1 + x^5) dx.

Original entry on oeis.org

1, 5, 4, 9, 6, 9, 6, 2, 7, 7, 7, 4, 7, 3, 5, 3, 0, 2, 9, 5, 6, 2, 1, 9, 5, 3, 8, 3, 1, 7, 0, 8, 8, 2, 1, 2, 8, 9, 1, 9, 6, 9, 7, 5, 8, 2, 2, 0, 1, 1, 7, 1, 6, 5, 4, 0, 0, 9, 0, 5, 3, 6, 0, 9, 7, 7, 2, 7, 3, 1, 4, 7, 8, 0, 7, 1, 4, 9, 7, 9, 8, 2, 2, 6, 8, 7, 5, 2, 8, 3, 4, 0, 5, 3, 0, 6, 5, 7, 6, 9, 7, 1, 7, 6, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 09 2024

Keywords

Examples

			1.54969627774735302956219538317088212891969758...
		

Crossrefs

Decimal expansions of Integral_{x=0..oo} 1 / sqrt(1 + x^k) dx: A118292 (k=3), A093341 (k=4), this sequence (k=5).

Programs

  • Mathematica
    RealDigits[Gamma[3/10] Gamma[6/5]/Sqrt[Pi], 10, 105][[1]]
    RealDigits[2^(2/5) * Gamma[1/5]^2 / (5*GoldenRatio*Gamma[2/5]), 10, 105][[1]] (* Vaclav Kotesovec, Apr 09 2024 *)

Formula

Equals Gamma(3/10) * Gamma(6/5) / sqrt(Pi).
Equals 2^(2/5) * Gamma(1/5)^2 / (5 * phi * Gamma(2/5)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Apr 09 2024
Previous Showing 11-15 of 15 results.