A126989
Gaps associated with the first and smallest arithmetic progressions of n consecutive primes in A006560.
Original entry on oeis.org
0, 1, 2, 6, 30, 30, 210
Offset: 1
- P. Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004.
A354484
Common differences associated with the arithmetic progressions of primes in A354376.
Original entry on oeis.org
0, 1, 2, 12, 6, 30, 150, 210, 210, 210, 30030, 13860, 60060, 420420, 4144140, 9699690, 87297210, 717777060, 4180566390, 18846497670, 26004868890
Offset: 1
The first few corresponding arithmetic progressions are:
d = 0: (2);
d = 1: (2, 3);
d = 2: (3, 5, 7);
d = 12: (7, 19, 31, 43);
d = 6: (5, 11, 17, 23, 29);
d = 30: (7, 37, 67, 97, 127, 157);
d = 150: (7, 157, 307, 457, 607, 757, 907).
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A5, Arithmetic progressions of primes, pp. 25-28.
A093366
Gaps associated with the arithmetic progressions in A093365.
Original entry on oeis.org
0, 3, 3, 8, 8, 12, 24, 24, 24, 24, 24, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 2772, 21252, 21252, 21252, 42504, 42504, 63756, 63756, 63756, 825132, 825132, 825132
Offset: 1
Erroneous terms a(31) and a(32) corrected by
Hugo Pfoertner, Oct 15 2010
A122764
Initial terms of arithmetic progression of primes in A005115 with duplicates removed.
Original entry on oeis.org
2, 3, 5, 7, 199, 110437, 4943, 31385539, 115453391, 53297929, 3430751869, 4808316343, 8297644387, 214861583621, 5749146449311
Offset: 1
A005115(7) comes from the 7-term prime progression {7, 157, 307, 457, 607, 757, 907}, and so 7 is in this sequence. - _Charlie Neder_, Feb 02 2019
-
a = {{ 1, 2, 2}, {2, 2 + j, 3}, {3, 3 + 2j, 7}, {4, 5 + 6j, 23}, {5, 5 + 6j, 29}, {6, 7 + 30j, 157}, {7, 7 + 150j, 907}, {8, 199 + 210j, 1669}, {9, 199 + 210j, 1879}, {10, 199 + 210j, 2089}, {11, 110437 + 13860j, 249037}, {12, 110437 + 13860j, 262897}}
Union[Table[CoefficientList[a[[n, 2]], j][[1]], {n, 1, 12}]]
Comments