A277265
Multi-table menage seating arrangements: T(n,k) for n,k >= 1 equals the number of ways to seat n*k married couples at n unlabeled round tables with 2*k unlabeled seats each, such that (i) the gender of persons alternates around each table; and (ii) spouses do not sit next to each other.
Original entry on oeis.org
0, 1, 0, 2, 12, 2, 9, 1200, 3280, 12, 44, 498960, 97193600, 5972400, 312, 265, 415981440, 14591060915200, 73866846715200, 31918489344, 9600, 1854, 615853022400, 7390721380256614400, 9022243072072662432000, 287350869074488547328, 393956489203200, 416880, 14833, 1477095102362880
Offset: 1
Table T(n,k):
n=1: 0, 0, 2, 12, 312, 9600, ...
n=2: 1, 12, 3280, 5972400, ...
n=3: 2, 1200, 97193600, ...
n=4: 9, 498960, 14591060915200, ...
...
A137801
Number of arrangements of 2n couples into n cars such that each car contains 2 men and 2 women but no couple (cars are labeled).
Original entry on oeis.org
0, 6, 900, 748440, 1559930400, 6928346502000, 58160619655538400, 845986566719614320000, 19957466912796971445888000, 724891264860942581350908960000, 38873628093261330554954970801600000
Offset: 1
-
{ a(n) = n! * sum(i=0,n, (-1)^i * sum(j=0,n-i, (2*n)! * (2*n-i-2*j)! / (n-i-j)! / i! / j! / 2^(2*n-2*i-j) ) ) }
A137802
Number of arrangements of 2n couples into n cars such that each car contains 2 men and 2 women but no couple (cars are unlabeled).
Original entry on oeis.org
0, 3, 150, 31185, 12999420, 9622703475, 11539805487210, 20981809690466625, 54997428661808232600, 199760599884519009411075, 973866344327734952575230750, 6207575427404936259602204502225
Offset: 1
-
{ a(n) = sum(i=0,n, (-1)^i * sum(j=0,n-i, (2*n)! * (2*n-i-2*j)! / (n-i-j)! / i! / j! / 2^(2*n-2*i-j) ) ) }
A174563
Number of 3 X n Latin rectangles such that every element of the second row has the same cyclic order (see comment).
Original entry on oeis.org
1, 14, 133, 3300, 93889, 3391086, 148674191, 7796637196, 480640583751, 34370030511334, 2818294139246649, 262403744798653716, 27506121212584723373, 3222018028986227724702, 418998630100386520363619, 60138044879434564251209580, 9477043948863636836099726259, 1632099068624734991723488992214
Offset: 3
- V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat. [Journal published by the Academy of Sciences of Russia], 4 (1992), 91-110.
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, Diskr. Mat., 1993, 5, no.1, 3-35 (Russian) [English translation in Discrete Math. and Appl., 1993, 3:3, 229-263 (pp. 255-257)].
A234618
Numbers of undirected cycles in the n-crown graph.
Original entry on oeis.org
1, 28, 586, 16676, 674171, 36729512, 2591431284, 229610080632, 24945009633237, 3259554588092452, 504229440385599358, 91120169013941688700, 19019291896651737256463, 4540685283391286195445008, 1229402290052883559000280168, 374675876836087520170128786864
Offset: 3
-
a[n_] := Sum[Binomial[n, k]*((-1)^k*(k - 1)! + Sum[Sum[(-1)^i*i!*(k - i)!*(k - i - 1)!*Binomial[k, k - j]*Binomial[n - k, j]*Binomial[k - j, i]*Binomial[2*k - i - 1, i]/2, {i, 0, k - 1}], {j, 0, k}]), {k, 2, n}];
Table[a[n], {n, 3, 18}] (* Jean-François Alcover, Oct 02 2017, after Andrew Howroyd *)
RecurrenceTable[{(n - 3) (180 n^5 - 3462 n^4 + 25685 n^3 - 91106 n^2 + 152414 n - 93847) a[n] == (360 n^8 - 8904 n^7 + 93172 n^6 - 538135 n^5 + 1875502 n^4 - 4041070 n^3 + 5268157 n^2 - 3817934 n + 1189124) a[n - 1] - (n - 1) (180 n^9 - 5262 n^8 + 67445 n^7 - 497202 n^6 + 2321291 n^5 - 7107149 n^4 + 14233985 n^3 - 17904305 n^2 + 12741400 n - 3858611) a[n - 2] - (n - 2) (n - 1) (180 n^9 - 5442 n^8 + 71807 n^7 - 543239 n^6 + 2598146 n^5 - 8144697 n^4 + 16705322 n^3 - 21515171 n^2 + 15619923 n - 4754598) a[n - 3] + 2 (n - 3) (n - 2) (n - 1) (540 n^7 - 12585 n^6 + 122039 n^5 - 636205 n^4 + 1920840 n^3 - 3360924 n^2 + 3186108 n - 1302080) a[n - 4] + 2 (n - 4) (n - 3) (n - 2) (n - 1) (540 n^7 - 13806 n^6 + 145494 n^5 - 814365 n^4 + 2591726 n^3 - 4628556 n^2 + 4207415 n - 1449736) a[n - 5] - (n - 5) (n - 4) (n - 3) (n - 2) (n - 1) (1440 n^6 - 28956 n^5 + 230284 n^4 - 915485 n^3 + 1878786 n^2 - 1811640 n + 577483) a[n - 6] + 3 (n - 6) (n - 5) (n - 4) (n - 3) (n - 2) (n - 1) (180 n^5 - 2562 n^4 + 13637 n^3 - 33023 n^2 + 34309 n - 10136) a[n - 7], a[3] == 1, a[4] == 28, a[5] == 586, a[6] == 16676, a[7] == 674171, a[8] == 36729512, a[9] == 2591431284}, a, {n, 3, 20}] (* Eric W. Weisstein, Oct 02 2017 *)
A264801
Number of essentially different seating arrangements for 2n couples around a circular table with 4n seats such that no spouses are neighbors, the neighbors of each person have opposite gender and no person's neighbors belong to the same couple.
Original entry on oeis.org
0, 6, 2400, 6375600, 45927907200, 713518388352000, 21216194909362252800, 1105729617210350356224000, 94398452626533646953922560000, 12514511465855205467497303154688000, 2467490887755897725667792936979169280000, 698323914872709997998407130752506728284160000
Offset: 1
a(1)=0 because with 2 couples it is impossible to satisfy all three conditions.
a(2)=6 because only the following arrangements are possible with 4 couples: ABdaCDbc, ABcaDCbd, ACdaBDcb, ACbaDBcd, ADcaBCdb, ADbaCBdc. This corresponds to the (2*2-1)! possibilities for persons B, C and D to choose a seat. After the positions of A, B, C and D are fixed, only A000183(2*2)=1 possibility remains to arrange their spouses a, b, c and d.
-
a000183(N)={my(a0=[0,0,0,1,2,20],a=vector(N),
f(x)=fibonacci(x-1)+fibonacci(x+1)+2;);
if(N<7,a=a0[1..N],for(k=1,6,a[k]=a0[k]);
for(n=7,N,a[n] = (-1)^n*(4*n+f(n)) +
(n/(n-1))*((n+1)*a[n-1] + 2*(-1)^n*f(n-1))
- ((2*n)/(n-2))*((n-3)*a[n-2] + (-1)^n*f(n-2))
+ (n/(n-3))*((n-5)*a[n-3] + 2*(-1)^(n-1)*f(n-3))
+ (n/(n-4))*(a[n-4] + (-1)^(n-1)*f(n-4))));a};
a264901(limit)={my(a183=a000183(2*limit)); for(n=1,limit,print1((2*n-1)!*a183[2*n],", "))};
a264901(12) \\ Hugo Pfoertner, Sep 05 2020
A306496
Number of (undirected) Hamiltonian cycles in the n-crown graph.
Original entry on oeis.org
0, 0, 1, 6, 156, 4800, 208440, 11939760, 874681920, 79795860480, 8873760470400, 1181869427692800, 185755937440550400, 34022680848982425600, 7183771725162237004800, 1732270657442505852672000, 473131604733608510097408000, 145308345869661566419795968000
Offset: 1
A176901
Number of 3 X n semireduced Latin rectangles, that is, having exactly n fixed points in the first two rows.
Original entry on oeis.org
4, 72, 1584, 70720, 3948480, 284570496, 25574768128, 2808243910656, 369925183388160, 57585548812887040, 10458478438093154304, 2191805683821733404672, 525011528578874444283904, 142540766765931981615759360, 43542026550306796238178877440, 14867182204795857282384287236096, 5640920219495105293649671985430528
Offset: 3
- V. S. Shevelev, Reduced Latin rectangles and square matrices with equal row and column sums, Diskr. Mat.(J. of the Akademy of Sciences of Russia) 4(1992), 91-110.
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, Diskr. Mat., 1993, 5, no.1, 3-35 (Russian).
- V. S. Shevelev, Modern enumeration theory of permutations with restricted positions, English translation, Discrete Math. and Appl., 1993, 3:3, 229-263 (pp. 255-257).
Comments