cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A005174 Number of rooted trees with 4 nodes of disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.

Original entry on oeis.org

0, 0, 10, 124, 890, 5060, 25410, 118524, 527530, 2276020, 9613010, 40001324, 164698170, 672961380, 2734531810, 11066546524, 44652164810, 179768037140, 722553165810, 2900661482124, 11634003919450, 46630112719300, 186802788139010, 748058256616124
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A094262.

Programs

  • Maple
    A005174:=2*z**2*(5+12*z)/(z-1)/(3*z-1)/(2*z-1)/(4*z-1); # conjectured by Simon Plouffe in his 1992 dissertation

Formula

The terms a(1)-a(18) are given by a(n) = (8/3)*(4^n - 4) - 9*3^n + 11*2^n + 5. - John W. Layman, Jul 20 1999
Formula of Layman matches the proven formula in McMorris and Zaslavsky. - Sean A. Irvine, Apr 12 2016
E.g.f.: (1/3)*(-17*exp(x) + 66*exp(2*x) - 81*exp(3*x) + 32*exp(4*x)). - Ilya Gutkovskiy, Apr 12 2016
G.f.: 2*x^3*(5 + 12*x)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)). - Andrew Howroyd, Mar 28 2025

Extensions

Name clarified by Andrew Howroyd, Mar 28 2025

A005175 Number of rooted trees with 5 nodes of disjoint sets of labels with union {1..n}. If a node has an empty set of labels then it must have at least two children.

Original entry on oeis.org

0, 0, 3, 131, 1830, 16990, 127953, 851361, 5231460, 30459980, 170761503, 931484191, 4979773890, 26223530970, 136522672653, 704553794621, 3611494269120, 18415268221960, 93516225653403, 473366777478651, 2390054857197150, 12043393363764950, 60590148885015753
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A094262.

Programs

  • Maple
    A005175:=-z**2*(3+86*z+120*z**2)/(z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[(125/24) 5^n - (64/3) 4^n + (135/4) 3^n - (76/3) 2^n + 209/24, {n, 20}] (* Michael De Vlieger, Apr 12 2016 *)

Formula

a(n+1) = 3*(3^n - 2*2^n + 1)/2 + 113*(4^n - 3*3^n + 3*2^n - 1)/6 + 625*(5^n - 4*4^n + 6*3^n - 4*2^n + 1)/24. - formula fitted by John W. Layman
a(n) = (125/24) * 5^n - (64/3) * 4^n + (135/4)*3^n - (76/3) * 2^n + 209/24 proven in McMorris and Zaslavsky, matches Layman's formula with an offset of 1. - Sean A. Irvine, Apr 12 2016
E.g.f.: (1/24)*exp(x)*(-1 + exp(x))^2*(209 - 798*exp(x) + 625*exp(2*x)). - Ilya Gutkovskiy, Apr 12 2016
G.f.: x^3*(3 + 86*x + 120*x^2)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)). - Andrew Howroyd, Mar 28 2025

Extensions

Name clarified by Andrew Howroyd, Mar 28 2025

A102735 Table read by rows giving the coefficients of general sum formulas of n-th sums of Bell numbers (A005001). The k-th row (k>=1) contains T(i,k) for i=1 to 2*k and k=1 to n-3, where T(i,k) satisfies Sum_{q=1..n} Bell(q) = 1 + C(n,2) + Sum_{k=1..n-3} Sum_{i=1..2*k} T(i,k) * C(n-k-2,1).

Original entry on oeis.org

2, 1, 8, 13, 10, 3, 22, 74, 134, 134, 70, 15, 52, 314, 1024, 1964, 2296, 1615, 630, 105, 114, 1155, 6084, 18954, 37512, 48677, 41426, 22330, 6930, 945, 240, 3927, 31494, 146907, 438948, 885653, 1237958, 1204525, 802648, 349965, 90090, 10395, 494
Offset: 1

Views

Author

André F. Labossière, Feb 07 2005

Keywords

Comments

The coefficients T(i,k) along the i-th columns of the triangle are the consecutive partial sums of those found in table A094262.

Examples

			Sum_Bell(7) = 1 + C(7,2) + 2*C(7-3,1) + C(7-3,2) + ... + 74*C(7-5,2) + 52*C(7-6,1)
= 1 + 21 + 8 + 6 + 8*C(3,1) + 13*C(3,2) + 10*C(3,3) + 22*C(2,1) + 74 + 52 = 1 + 21 + 8 + 6
+ 24 + 39 + 10 + 44 + 74 + 52 = 279.
		

Crossrefs

A094261 a(n) = n(n-1)(n-3)(n-6)...(n-t), where t is the largest triangular number less than n; number of factors in the product is ceiling((sqrt(1+8*n)-1)/2).

Original entry on oeis.org

1, 2, 6, 12, 40, 90, 168, 560, 1296, 2520, 4400, 14256, 32760, 64064, 113400, 187200, 586432, 1321920, 2560896, 4522000, 7484400, 11797632, 35784320, 78871968, 150480000, 263120000, 433060992, 681080400, 1033305728, 3044304000
Offset: 1

Views

Author

Amarnath Murthy, Apr 26 2004

Keywords

Examples

			a(8) = 8*(8-1)*(8-3)*(8-6) = 8*7*5*2 = 560.
		

Crossrefs

Programs

  • Maple
    a:=n->product(n-k*(k+1)/2,k=0..ceil((sqrt(1+8*n)-1)/2)-1): seq(a(n),n=1..35); # Emeric Deutsch, Feb 03 2006

Extensions

Corrected and extended by Emeric Deutsch, Feb 03 2006
Previous Showing 11-14 of 14 results.