A094436
Triangular array T(n,k) = Fibonacci(k+1)*binomial(n,k) for k = 0..n; n >= 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 12, 5, 1, 5, 20, 30, 25, 8, 1, 6, 30, 60, 75, 48, 13, 1, 7, 42, 105, 175, 168, 91, 21, 1, 8, 56, 168, 350, 448, 364, 168, 34, 1, 9, 72, 252, 630, 1008, 1092, 756, 306, 55, 1, 10, 90, 360, 1050, 2016, 2730, 2520, 1530, 550, 89
Offset: 0
First four rows:
1
1 1
1 2 2
1 3 6 3
Sum = 1+3+6+3=13=F(7); alt.Sum = 1-3+6-3=1=F(2).
T(3,2)=F(3)C(3,2)=2*3=6.
From _Philippe Deléham_, Mar 26 2012: (Start)
(1, 0, 0, 1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins :
1
1, 0
1, 1, 0
1, 2, 2, 0
1, 3, 6, 3, 0
1, 4, 12, 12, 5, 0
1, 5, 20, 30, 25, 8, 0
1, 6, 30, 60, 75, 48, 13, 0 . (End)
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- Michael Griffin, Ken Ono, Larry Rolen, and Don Zagier, Jensen polynomials for the Riemann zeta function and other sequences, PNAS, vol. 116, no. 23, 11103-11110, June 4, 2019.
-
Flat(List([0..12], n-> List([0..n], k-> Fibonacci(k+1)* Binomial(n,k) ))); # G. C. Greubel, Jul 11 2019
-
[Fibonacci(k+1)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2019
-
with(combinat); seq(seq(fibonacci(k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094436 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094437 *)
(* Second program *)
Table[Fibonacci[k+1]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
-
T(n,k) = fibonacci(k+1)*binomial(n,k); \\ G. C. Greubel, Jul 11 2019
-
[[fibonacci(k+1)*binomial(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 11 2019
A094435
Triangular array read by rows: T(n,k) = Fibonacci(k)*C(n,k), k = 1...n; n>=1.
Original entry on oeis.org
1, 2, 1, 3, 3, 2, 4, 6, 8, 3, 5, 10, 20, 15, 5, 6, 15, 40, 45, 30, 8, 7, 21, 70, 105, 105, 56, 13, 8, 28, 112, 210, 280, 224, 104, 21, 9, 36, 168, 378, 630, 672, 468, 189, 34, 10, 45, 240, 630, 1260, 1680, 1560, 945, 340, 55, 11, 55, 330, 990, 2310, 3696, 4290, 3465, 1870, 605, 89
Offset: 1
First few rows:
1;
2 1;
3 3 2;
4 6 8 3;
5, 10, 20, 15, 5;
6, 15, 40, 45, 30, 8;
-
Flat(List([1..12], n-> List([1..n], k-> Binomial(n,k)*Fibonacci(k) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(binomial(n,k)*fibonacci(k), k=1..n), n=1..12); # G. C. Greubel, Oct 30 2019
-
Table[Fibonacci[k]*Binomial[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(k);
for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Oct 30 2019
A094437
Triangular array T(n,k) = Fibonacci(k+2)*C(n,k), k=0..n, n>=0.
Original entry on oeis.org
1, 1, 2, 1, 4, 3, 1, 6, 9, 5, 1, 8, 18, 20, 8, 1, 10, 30, 50, 40, 13, 1, 12, 45, 100, 120, 78, 21, 1, 14, 63, 175, 280, 273, 147, 34, 1, 16, 84, 280, 560, 728, 588, 272, 55, 1, 18, 108, 420, 1008, 1638, 1764, 1224, 495, 89, 1, 20, 135, 600, 1680, 3276, 4410, 4080, 2475, 890
Offset: 0
First four rows:
1;
1 2;
1 4 3;
1 6 9 5;
sum = 1+6+9+5=21=F(8); alt.sum = 1-6+9-5=-1=-F(1).
T(3,2)=F(4)*C(3,2)=3*3=9.
From _Philippe Deléham_, Apr 28 2012: (Start)
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, ...) begins :
1;
1, 0;
1, 2, 0;
1, 4, 3, 0;
1, 6, 9, 5, 0;
1, 8, 18, 20, 8, 0; . (End)
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(k+2) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094436 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094437 *)
(* Second program *)
Table[Fibonacci[k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(k+2);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A094442
Triangular array T(n,k) = Fibonacci(n+2-k)*C(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 5, 9, 6, 1, 8, 20, 18, 8, 1, 13, 40, 50, 30, 10, 1, 21, 78, 120, 100, 45, 12, 1, 34, 147, 273, 280, 175, 63, 14, 1, 55, 272, 588, 728, 560, 280, 84, 16, 1, 89, 495, 1224, 1764, 1638, 1008, 420, 108, 18, 1, 144, 890, 2475, 4080, 4410, 3276, 1680, 600, 135, 20, 1
Offset: 0
First five rows:
1;
2, 1;
3, 4, 1;
5, 9, 6, 1;
8, 20, 18, 8, 1;
First three polynomials v(n,x): 1, 2 + x, 3 + 4x + x^2.
From _Philippe Deléham_, Apr 02 2012: (Start)
(0, 2, -1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, ...) begins:
1;
0, 1;
0, 2, 1;
0, 3, 4, 1;
0, 5, 9, 6, 1;
0, 8, 20, 18, 8, 1. (End)
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+2) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(n-k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094441 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094442 *)
(* Second program *)
Table[Fibonacci[n-k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+2);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A367301
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 3 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 3, 3, 10, 16, 8, 33, 75, 63, 21, 109, 320, 380, 220, 55, 360, 1296, 1980, 1620, 720, 144, 1189, 5070, 9459, 9940, 6255, 2262, 377, 3927, 19353, 42615, 54561, 44085, 22635, 6909, 987, 12970, 72532, 184034, 277480, 272854, 179972, 78230, 20672, 2584
Offset: 1
First eight rows:
1
3 3
10 16 8
33 75 63 21
109 320 380 220 55
360 1296 1980 1620 720 144
1189 5070 9459 9940 6255 2262 377
3927 19353 42615 54561 44085 22635 6909 987
Row 4 represents the polynomial p(4,x) = 33 + 75*x + 63*x^2 + 21*x^3, so (T(4,k)) = (33,75,63,21), k=0..3.
Cf.
A006190 (column 1);
A001906 (p(n,n-1));
A154244 (row sums, p(n,1));
A077957 (alternating row sums, p(n,-1));
A190984 (p(n,2));
A006190 (signed, p(n,-2));
A154244 (p(n,-3));
A190984 (p(n,-4));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300.
-
p[1, x_] := 1; p[2, x_] := 3 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A368518
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 + 3*x^2.
Original entry on oeis.org
1, 1, 2, 2, 4, 7, 3, 10, 18, 20, 5, 20, 51, 68, 61, 8, 40, 118, 220, 251, 182, 13, 76, 264, 584, 905, 888, 547, 21, 142, 558, 1452, 2678, 3540, 3076, 1640, 34, 260, 1145, 3380, 7279, 11536, 13418, 10456, 4921, 55, 470, 2286, 7548, 18391, 33990, 47600, 49552
Offset: 1
First eight rows:
1
1 2
2 4 7
3 10 18 20
5 20 51 68 61
8 40 118 220 251 182
13 76 264 584 905 888 547
21 142 558 1452 2678 3540 3076 1640
Row 4 represents the polynomial p(4,x) = 3 + 10*x + 18*x^2 + 20*x^3, so (T(4,k)) = (3,10,18,20), k=0..3.
Cf.
A000045 (column 1);
A002605, (p(n,n-1));
A030195 (row sums), (p(n,1));
A182228 (alternating row sums), (p(n,-1));
A015545, (p(n,2));
A099012, (p(n,-2));
A087567, (p(n,3));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300,
A367301,
A368150,
A368151,
A368152,
A368153,
A368154,
A368155,
A368156.
-
p[1, x_] := 1; p[2, x_] := 1 + 2 x; u[x_] := p[2, x]; v[x_] := 1 + 3x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A094438
Triangular array T(n,k) = Fibonacci(k+3)*C(n,k), k=0..n, n>=0.
Original entry on oeis.org
2, 2, 3, 2, 6, 5, 2, 9, 15, 8, 2, 12, 30, 32, 13, 2, 15, 50, 80, 65, 21, 2, 18, 75, 160, 195, 126, 34, 2, 21, 105, 280, 455, 441, 238, 55, 2, 24, 140, 448, 910, 1176, 952, 440, 89, 2, 27, 180, 672, 1638, 2646, 2856, 1980, 801, 144, 2, 30, 225, 960, 2730, 5292, 7140, 6600, 4005, 1440, 233
Offset: 0
First few rows:
2;
2 3;
2 6 5;
2 9 15 8;
2, 12, 30, 32, 13;
2, 15, 50, 80, 65, 21;
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(k+3) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(k+3): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(k+3)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
Table[Fibonacci[k+3]Binomial[n,k],{n,0,12},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 16 2017 *)
-
T(n,k) = binomial(n,k)*fibonacci(k+3);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(k+3) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A094439
Triangular array T(n,k) = Fibonacci(k+4)*C(n,k), k=0..n, n>=0.
Original entry on oeis.org
3, 3, 5, 3, 10, 8, 3, 15, 24, 13, 3, 20, 48, 52, 21, 3, 25, 80, 130, 105, 34, 3, 30, 120, 260, 315, 204, 55, 3, 35, 168, 455, 735, 714, 385, 89, 3, 40, 224, 728, 1470, 1904, 1540, 712, 144, 3, 45, 288, 1092, 2646, 4284, 4620, 3204, 1296, 233, 3, 50, 360, 1560, 4410, 8568, 11550, 10680, 6480, 2330, 377
Offset: 0
First few rows:
3;
3, 5;
3, 10, 8;
3, 15, 24, 13;
3, 20, 48, 52, 21;
3, 25, 80, 130, 105, 34;
Cf.
A000045,
A007318,
A094435,
A094436,
A094437,
A094438,
A094440,
A094441,
A094442,
A094443,
A094444.
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)* Fibonacci(k+4) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(k+4): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(k+4)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
Table[Fibonacci[k+4]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(k+4);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(k+4) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A094443
Triangular array T(n,k) = Fibonacci(n+3-k)*C(n,k), k=0..n, n>=0.
Original entry on oeis.org
2, 3, 2, 5, 6, 2, 8, 15, 9, 2, 13, 32, 30, 12, 2, 21, 65, 80, 50, 15, 2, 34, 126, 195, 160, 75, 18, 2, 55, 238, 441, 455, 280, 105, 21, 2, 89, 440, 952, 1176, 910, 448, 140, 24, 2, 144, 801, 1980, 2856, 2646, 1638, 672, 180, 27, 2, 233, 1440, 4005, 6600, 7140, 5292, 2730, 960, 225, 30, 2
Offset: 0
First few rows:
2;
3, 2;
5, 6, 2;
8, 15, 9, 2;
13, 32, 30, 12, 2;
21, 65, 80, 50, 15, 2;
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+3) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+3): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat): seq(seq(fibonacci(n-k+3)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
Table[Fibonacci[n-k+3]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+3);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+3) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A094444
Triangular array T(n,k) = Fibonacci(n+4-k)*C(n,k), k=0..n, n>=0.
Original entry on oeis.org
3, 5, 3, 8, 10, 3, 13, 24, 15, 3, 21, 52, 48, 20, 3, 34, 105, 130, 80, 25, 3, 55, 204, 315, 260, 120, 30, 3, 89, 385, 714, 735, 455, 168, 35, 3, 144, 712, 1540, 1904, 1470, 728, 224, 40, 3, 233, 1296, 3204, 4620, 4284, 2646, 1092, 288, 45, 3, 377, 2330, 6480, 10680, 11550, 8568, 4410, 1560, 360, 50, 3
Offset: 0
First few rows:
3;
5, 3;
8, 10, 3;
13, 24, 15, 3;
21, 52, 48, 20, 3;
34, 105, 130, 80, 25, 3;
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+4) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+4): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(n-k+4)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
Table[Fibonacci[n-k+4]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+4);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+4) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
Comments