A198307
Moore lower bound on the order of a (7,g)-cage.
Original entry on oeis.org
8, 14, 50, 86, 302, 518, 1814, 3110, 10886, 18662, 65318, 111974, 391910, 671846, 2351462, 4031078, 14108774, 24186470, 84652646, 145118822, 507915878, 870712934, 3047495270, 5224277606, 18284971622, 31345665638, 109709829734, 188073993830, 658258978406
Offset: 3
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306 (k=6), this sequence (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7).
-
DeleteCases[CoefficientList[Series[2 x^3*(4 + 3 x - 6 x^2)/((1 - x) (1 - 6 x^2)), {x, 0, 31}], x], 0] (* Michael De Vlieger, Mar 17 2017 *)
LinearRecurrence[{1,6,-6},{8,14,50},30] (* or *) CoefficientList[ Series[ -((2 (-4-3 x+6 x^2))/(1-x-6 x^2+6 x^3)),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2021 *)
-
Vec(2*x^3*(4 + 3*x - 6*x^2) / ((1 - x)*(1 - 6*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017
A198308
Moore lower bound on the order of an (8,g)-cage.
Original entry on oeis.org
9, 16, 65, 114, 457, 800, 3201, 5602, 22409, 39216, 156865, 274514, 1098057, 1921600, 7686401, 13451202, 53804809, 94158416, 376633665, 659108914, 2636435657, 4613762400, 18455049601, 32296336802, 129185347209, 226074357616, 904297430465, 1582520503314
Offset: 3
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306 (k=6),
A198307 (k=7), this sequence (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7).
-
LinearRecurrence[{1,7,-7},{9,16,65},40] (* Harvey P. Dale, Oct 14 2019 *)
-
Vec(x^3*(9 + 7*x - 14*x^2) / ((1 - x)*(1 - 7*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017
A198309
Moore lower bound on the order of a (9,g)-cage.
Original entry on oeis.org
10, 18, 82, 146, 658, 1170, 5266, 9362, 42130, 74898, 337042, 599186, 2696338, 4793490, 21570706, 38347922, 172565650, 306783378, 1380525202, 2454267026, 11044201618, 19634136210, 88353612946, 157073089682, 706828903570, 1256584717458, 5654631228562
Offset: 3
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306 (k=6),
A198307 (k=7),
A198308 (k=8), this sequence (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7).
-
LinearRecurrence[{1,8,-8},{10,18,82},30] (* Harvey P. Dale, Apr 03 2015 *)
-
Vec(2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017
A198310
Moore lower bound on the order of a (10,g)-cage.
Original entry on oeis.org
11, 20, 101, 182, 911, 1640, 8201, 14762, 73811, 132860, 664301, 1195742, 5978711, 10761680, 53808401, 96855122, 484275611, 871696100, 4358480501, 7845264902, 39226324511, 70607384120, 353036920601, 635466457082, 3177332285411
Offset: 3
Moore lower bound on the order of a (k,g) cage:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306 (k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9), this sequence (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7).
-
A198310[n_] := (-3-(-3)^n+4*3^n)/12; Array[A198310, 30, 3] (* or *)
LinearRecurrence[{1, 9, -9}, {11, 20, 101}, 30] (* Paolo Xausa, Feb 21 2024 *)
-
a(n)=(-3-(-3)^n+4*3^n)/12 \\ Charles R Greathouse IV, Jul 06 2017
A191595
Order of smallest n-regular graph of girth 5.
Original entry on oeis.org
5, 10, 19, 30, 40, 50
Offset: 2
- M. Abreu et al., A family of regular graphs of girth 5, Discrete Math., 308 (2008), 1810-1815.
- Andries E. Brouwer, Cages
- Geoff Exoo, Regular graphs of given degree and girth
- G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).
- G. Royle, Cages of higher valency
Orders of cages:
A054760 (n,k),
A000066 (3,n),
A037233 (4,n),
A218553 (5,n),
A218554 (6,n),
A218555 (7,n), this sequence (n,5).
Moore lower bound on the orders of (k,g) cages:
A198300 (square); rows:
A000027 (k=2),
A027383 (k=3),
A062318 (k=4),
A061547 (k=5),
A198306(k=6),
A198307 (k=7),
A198308 (k=8),
A198309 (k=9),
A198310 (k=10),
A094626 (k=11); columns:
A020725 (g=3),
A005843 (g=4),
A002522 (g=5),
A051890 (g=6),
A188377 (g=7). -
Jason Kimberley, Nov 02 2011
A094623
Expansion of g.f. x*(1+10*x)/((1-x)*(1-10*x^2)).
Original entry on oeis.org
0, 1, 11, 21, 121, 221, 1221, 2221, 12221, 22221, 122221, 222221, 1222221, 2222221, 12222221, 22222221, 122222221, 222222221, 1222222221, 2222222221, 12222222221, 22222222221, 122222222221, 222222222221, 1222222222221
Offset: 0
-
LinearRecurrence[{1, 10, -10}, {0, 1, 11}, 30] (* Paolo Xausa, Feb 22 2024 *)
A094624
Expansion of g.f. x*(1+11*x+x^2)/((1-x)*(1+x)*(1-10*x^2)).
Original entry on oeis.org
0, 1, 11, 12, 121, 122, 1221, 1222, 12221, 12222, 122221, 122222, 1222221, 1222222, 12222221, 12222222, 122222221, 122222222, 1222222221, 1222222222, 12222222221, 12222222222, 122222222221, 122222222222, 1222222222221, 1222222222222, 12222222222221
Offset: 0
-
LinearRecurrence[{0, 11, 0, -10}, {0, 1, 11, 12}, 30] (* Paolo Xausa, Feb 22 2024 *)
-
concat(0, Vec(x*(1+11*x+x^2)/((1-x)*(1+x)*(1-10*x^2)) + O(x^40))) \\ Colin Barker, Dec 01 2015
A094627
Expansion of (1+x)^2/((1-x)*(1-10*x^2)).
Original entry on oeis.org
1, 3, 14, 34, 144, 344, 1444, 3444, 14444, 34444, 144444, 344444, 1444444, 3444444, 14444444, 34444444, 144444444, 344444444, 1444444444, 3444444444, 14444444444, 34444444444, 144444444444, 344444444444, 1444444444444
Offset: 0
(x^2 + 2*x + 1)/(10*x^3 - 10*x^2 - x + 1) = 1 + 3*x + 14*x^2 + 34*x^3 + 144*x^4 + 344*x^5 + 1444*x^6 + 3444*x^7 + 14444*x^8 + ...
-
A011557aer := proc(n) if type(n,'odd') then 0 ; else 10^(n/2) ; end if; end proc:
A094627 := proc(n) (13*A011557aer(n)+31*A011557aer(n-1)-4)/9 ; end proc:
seq(A094627(n),n=0..10) ; # R. J. Mathar, Nov 16 2010
-
sr[n_,nn_]:=Table[FromDigits[PadRight[{n},i,4]],{i,nn}]; With[{nn=20}, Sort[ Join[ sr[ 1,nn],sr[3,nn]]]] (* Harvey P. Dale, May 25 2014 *)
Swapped the generic comment and the specific definition; added Maple prog.
Comments