cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A198307 Moore lower bound on the order of a (7,g)-cage.

Original entry on oeis.org

8, 14, 50, 86, 302, 518, 1814, 3110, 10886, 18662, 65318, 111974, 391910, 671846, 2351462, 4031078, 14108774, 24186470, 84652646, 145118822, 507915878, 870712934, 3047495270, 5224277606, 18284971622, 31345665638, 109709829734, 188073993830, 658258978406
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), this sequence (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    DeleteCases[CoefficientList[Series[2 x^3*(4 + 3 x - 6 x^2)/((1 - x) (1 - 6 x^2)), {x, 0, 31}], x], 0] (* Michael De Vlieger, Mar 17 2017 *)
    LinearRecurrence[{1,6,-6},{8,14,50},30] (* or *) CoefficientList[ Series[ -((2 (-4-3 x+6 x^2))/(1-x-6 x^2+6 x^3)),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2021 *)
  • PARI
    Vec(2*x^3*(4 + 3*x - 6*x^2) / ((1 - x)*(1 - 6*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

Formula

a(2*i) = 2*Sum_{j=0..i-1}6^j = string "2"^i read in base 6.
a(2*i+1) = 6^i + 2*Sum_{j=0..i-1}6^j = string "1"*"2"^i read in base 6.
a(n) <= A218555(n).
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) for n>5.
G.f.: 2*x^3*(4 + 3*x - 6*x^2) / ((1 - x)*(1 - 6*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2*(6^(n/2) - 1)/5 for n>2 and even.
a(n) = (7*6^(n/2-1/2) - 2)/5 for n>2 and odd. (End)
E.g.f.: (12*(cosh(sqrt(6)*x) - cosh(x)) + 7*sqrt(6)*sinh(sqrt(6)*x) - 12*sinh(x) - 30*x*(1 + x))/30. - Stefano Spezia, Apr 07 2022

A198308 Moore lower bound on the order of an (8,g)-cage.

Original entry on oeis.org

9, 16, 65, 114, 457, 800, 3201, 5602, 22409, 39216, 156865, 274514, 1098057, 1921600, 7686401, 13451202, 53804809, 94158416, 376633665, 659108914, 2636435657, 4613762400, 18455049601, 32296336802, 129185347209, 226074357616, 904297430465, 1582520503314
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), this sequence (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    LinearRecurrence[{1,7,-7},{9,16,65},40] (* Harvey P. Dale, Oct 14 2019 *)
  • PARI
    Vec(x^3*(9 + 7*x - 14*x^2) / ((1 - x)*(1 - 7*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

Formula

a(2*i) = 2 Sum_{j=0..i-1} 7^j = string "2"^i read in base 7.
a(2*i+1) = 7^i + 2 Sum_{j=0..i-1} 7^j = string "1"*"2"^i read in base 7.
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) for n>5.
G.f.: x^3*(9 + 7*x - 14*x^2) / ((1 - x)*(1 - 7*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = (7^(n/2) - 1)/3 for n even.
a(n) = (4*7^(n/2-1/2) - 1)/3 for n odd. (End)
E.g.f.: (7*(cosh(sqrt(7)*x) - cosh(x) - sinh(x)) + 4*sqrt(7)*sinh(sqrt(7)*x) - 21*x*(1 + x))/21. - Stefano Spezia, Apr 09 2022

A198309 Moore lower bound on the order of a (9,g)-cage.

Original entry on oeis.org

10, 18, 82, 146, 658, 1170, 5266, 9362, 42130, 74898, 337042, 599186, 2696338, 4793490, 21570706, 38347922, 172565650, 306783378, 1380525202, 2454267026, 11044201618, 19634136210, 88353612946, 157073089682, 706828903570, 1256584717458, 5654631228562
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), this sequence (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

  • Mathematica
    LinearRecurrence[{1,8,-8},{10,18,82},30] (* Harvey P. Dale, Apr 03 2015 *)
  • PARI
    Vec(2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)) + O(x^40)) \\ Colin Barker, Mar 17 2017

Formula

a(2*i) = 2 Sum_{j=0..i-1} 8^j = string "2"^i read in base 8.
a(2*i+1) = 8^i + 2 Sum_{j=0..i-1} 8^j = string "1"*"2"^i read in base 8.
From Colin Barker, Feb 01 2013: (Start)
a(n) = a(n-1) + 8*a(n-2) - 8*a(n-3) for n>5.
G.f.: 2*x^3*(5 + 4*x - 8*x^2) / ((1 - x)*(1 - 8*x^2)). (End)
From Colin Barker, Mar 17 2017: (Start)
a(n) = 2*(2^(3*n/2) - 1)/7 for n even.
a(n) = (9*2^((3*(n-1))/2) - 2)/7 for n odd. (End)
E.g.f.: (8*(cosh(2*sqrt(2)*x) - cosh(x) - sinh(x)) + 9*sqrt(2)*sinh(2*sqrt(2)*x) - 28*x*(1 + x))/28. - Stefano Spezia, Apr 09 2022

A198310 Moore lower bound on the order of a (10,g)-cage.

Original entry on oeis.org

11, 20, 101, 182, 911, 1640, 8201, 14762, 73811, 132860, 664301, 1195742, 5978711, 10761680, 53808401, 96855122, 484275611, 871696100, 4358480501, 7845264902, 39226324511, 70607384120, 353036920601, 635466457082, 3177332285411
Offset: 3

Views

Author

Jason Kimberley, Oct 30 2011

Keywords

Crossrefs

Moore lower bound on the order of a (k,g) cage: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), this sequence (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7).

Programs

Formula

a(2i) = 2*Sum_{j=0..i-1} 9^j = string "2"^i read in base 9.
a(2i+1) = 9^i + 2*Sum_{j=0..i-1} 9^j = string "1"*"2"^i read in base 9.
From Colin Barker, Feb 01 2013: (Start)
a(n) = (-3-(-3)^n+4*3^n)/12.
a(n) = a(n-1)+9*a(n-2)-9*a(n-3).
G.f.: -x^3*(18*x^2-9*x-11) / ((x-1)*(3*x-1)*(3*x+1)). (End)
E.g.f.: (3*(cosh(3*x) - cosh(x) - sinh(x)) + 5*sinh(3*x))/12 - x - x^2. - Stefano Spezia, Apr 09 2022

A191595 Order of smallest n-regular graph of girth 5.

Original entry on oeis.org

5, 10, 19, 30, 40, 50
Offset: 2

Views

Author

N. J. A. Sloane, Jun 07 2011

Keywords

Comments

Current upper bounds for a(8)..a(20) are 80, 96, 124, 154, 203, 230, 288, 312, 336, 448, 480, 512, 576. - Corrected from "Lower" to "Upper" and updated, from Table 4 of the Dynamic cage survey, by Jason Kimberley, Dec 29 2012
Current lower bounds for a(8)..a(20) are 67, 86, 103, 124, 147, 174, 199, 230, 259, 294, 327, 364, 403. - from Table 4 of the Dynamic cage survey via Jason Kimberley, Dec 31 2012

Crossrefs

Orders of cages: A054760 (n,k), A000066 (3,n), A037233 (4,n), A218553 (5,n), A218554 (6,n), A218555 (7,n), this sequence (n,5).
Moore lower bound on the orders of (k,g) cages: A198300 (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306(k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10),A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7). - Jason Kimberley, Nov 02 2011

Formula

a(n) >= A002522(n) with equality if and only if n = 2, 3, 7 or possibly 57. - Jason Kimberley, Nov 02 2011

Extensions

a(2) = 5 prepended by Jason Kimberley, Jan 02 2013

A094623 Expansion of g.f. x*(1+10*x)/((1-x)*(1-10*x^2)).

Original entry on oeis.org

0, 1, 11, 21, 121, 221, 1221, 2221, 12221, 22221, 122221, 222221, 1222221, 2222221, 12222221, 22222221, 122222221, 222222221, 1222222221, 2222222221, 12222222221, 22222222221, 122222222221, 222222222221, 1222222222221
Offset: 0

Views

Author

Paul Barry, May 15 2004

Keywords

Comments

Previous name was: Sequence whose n-th term digits sum to n.
n-th term digits are reversals of A094624(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 10, -10}, {0, 1, 11}, 30] (* Paolo Xausa, Feb 22 2024 *)

Formula

G.f.: x*(1+10*x)/((1-x)*(1-10*x^2)).
a(n) = (10^(n/2)/2)*(11/9 + 2*sqrt(10)/9 - (2*sqrt(10)/9 - 11/9)*(-1)^n) - 11/9.
E.g.f.: (11*(cosh(sqrt(10)*x) - cosh(x)) + 2*sqrt(10)*sinh(sqrt(10)*x) - 11*sinh(x))/9. - Stefano Spezia, Feb 21 2024

A094624 Expansion of g.f. x*(1+11*x+x^2)/((1-x)*(1+x)*(1-10*x^2)).

Original entry on oeis.org

0, 1, 11, 12, 121, 122, 1221, 1222, 12221, 12222, 122221, 122222, 1222221, 1222222, 12222221, 12222222, 122222221, 122222222, 1222222221, 1222222222, 12222222221, 12222222222, 122222222221, 122222222222, 1222222222221, 1222222222222, 12222222222221
Offset: 0

Views

Author

Paul Barry, May 15 2004

Keywords

Comments

Previous name: "Sequence whose n-th term digits sum to n."
n-th term digits are reversals of A094623(n).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 11, 0, -10}, {0, 1, 11, 12}, 30] (* Paolo Xausa, Feb 22 2024 *)
  • PARI
    concat(0, Vec(x*(1+11*x+x^2)/((1-x)*(1+x)*(1-10*x^2)) + O(x^40))) \\ Colin Barker, Dec 01 2015

Formula

a(n) = 10^(n/2)*(11/18 + 11*sqrt(10)/180 - (11*sqrt(10)/180 - 11/18)(-1)^n) - 13/18 - (-1)^n/2.
From Colin Barker, Dec 01 2015: (Start)
a(n) = 11*a(n-2) - 10*a(n-4) for n > 3.
G.f.: x*(1+11*x+x^2) / ((1-x)*(1+x)*(1-10*x^2)). (End)
E.g.f.: (110*(cosh(sqrt(10)*x) - cosh(x)) + 11*sqrt(10)*sinh(sqrt(10)*x) - 20*sinh(x))/90. - Stefano Spezia, Feb 21 2024

A094627 Expansion of (1+x)^2/((1-x)*(1-10*x^2)).

Original entry on oeis.org

1, 3, 14, 34, 144, 344, 1444, 3444, 14444, 34444, 144444, 344444, 1444444, 3444444, 14444444, 34444444, 144444444, 344444444, 1444444444, 3444444444, 14444444444, 34444444444, 144444444444, 344444444444, 1444444444444
Offset: 0

Views

Author

Paul Barry, May 15 2004

Keywords

Comments

The digital sum of the n-th term is 2n+1.
a(n) = floor(10^floor(n/2)*(2-(-1)^n+4/9)) = 1,3,14,34,144,344,... (i.e. 2-(-1)^n = 1 for even n, 3 for odd n, followed by floor(n/2) digits '4'.) - M. F. Hasler

Examples

			(x^2 + 2*x + 1)/(10*x^3 - 10*x^2 - x + 1) = 1 + 3*x + 14*x^2 + 34*x^3 + 144*x^4 + 344*x^5 + 1444*x^6 + 3444*x^7 + 14444*x^8 + ...
		

Crossrefs

Cf. A094626.

Programs

  • Maple
    A011557aer := proc(n) if type(n,'odd') then 0 ; else 10^(n/2) ; end if; end proc:
    A094627 := proc(n) (13*A011557aer(n)+31*A011557aer(n-1)-4)/9 ; end proc:
    seq(A094627(n),n=0..10) ; # R. J. Mathar, Nov 16 2010
  • Mathematica
    sr[n_,nn_]:=Table[FromDigits[PadRight[{n},i,4]],{i,nn}]; With[{nn=20}, Sort[ Join[ sr[ 1,nn],sr[3,nn]]]] (* Harvey P. Dale, May 25 2014 *)

Formula

a(n) = 10^(n/2)*( 31*sqrt(10)/180 +13/18 -(31*sqrt(10)/180-13/18)*(-1)^n )-4/9.
a(n) = (13*b(n)+31*b(n-1)-4)/9 with b(n) = 1,0,10,0,100,0,1000,.. (aerated A011557) [R. J. Mathar, Nov 26 2010]

Extensions

Swapped the generic comment and the specific definition; added Maple prog.
Previous Showing 11-18 of 18 results.