cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A211275 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 3, 5, 5, 6, 6, 8, 8, 9, 9, 11, 11, 13, 13, 15, 15, 16, 16, 19, 19, 20, 20, 22, 22, 24, 24, 27, 27, 28, 28, 31, 31, 32, 32, 35, 35, 37, 37, 39, 39, 40, 40, 44, 44, 46, 46, 48, 48, 50, 50, 53, 53, 54, 54, 58, 58, 59, 59, 62, 62, 64, 64, 66, 66, 68, 68
Offset: 1

Views

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

A161842 Partial sums of A161841.

Original entry on oeis.org

2, 4, 6, 10, 12, 16, 18, 22, 26, 30, 32, 38, 40, 44, 48, 54, 56, 62, 64, 70, 74, 78, 80, 88, 92, 96, 100, 106, 108, 116, 118, 124, 128, 132, 136, 146, 148, 152, 156, 164, 166, 174, 176, 182, 188, 192, 194, 204, 208, 214, 218, 224, 226, 234, 238, 246
Offset: 1

Views

Author

Omar E. Pol, Jun 23 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[2*Ceiling[DivisorSigma[0, Range[100]]/2]] (* Paolo Xausa, Feb 05 2025 *)
  • PARI
    a(n) = sum(i=1, n, floor(n/i)) + sqrtint(n) \\ David A. Corneth, Dec 17 2020
    
  • PARI
    first(n) = {my(res = vector(n), t = 0); for(i = 1, n, t+=(numdiv(i)+issquare(i)); res[i] = t ); res } \\ David A. Corneth, Dec 17 2020

Formula

a(n) = 2*A094820(n).
a(n) = Sum_{i=1..n} (1 + A008836(i))*floor(n/i). - Enrique Pérez Herrero, Jul 10 2012
a(n) ~ (log(n) + 2*gamma - 1)*n + sqrt(n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 01 2021

A347517 Partial sums of A347516.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 40, 41, 44, 45, 47, 49, 51, 52, 55, 56, 58, 60, 62, 63, 66, 67, 69, 71, 73, 74, 77, 78, 80, 82, 84, 85, 88, 89, 91, 93, 95, 96, 99, 100, 102, 104, 107, 108, 111, 112, 115, 117, 119, 120, 124, 125, 127, 129, 132, 133, 136
Offset: 1

Views

Author

Seiichi Manyama, Sep 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, # <= n^(1/3) &]; Accumulate @ Array[f, 100] (* Amiram Eldar, Sep 04 2021 *)
  • PARI
    N=99; x='x+O('x^N); Vec(sum(k=1, N^(1/3), x^k^3/(1-x^k))/(1-x))
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^3<=k)); \\ Michel Marcus, Sep 05 2021

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k^3)/(1 - x^k).

A347527 Partial sums of A347526.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102
Offset: 1

Views

Author

Seiichi Manyama, Sep 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := DivisorSum[n, 1 &, # <= n^(1/4) &]; Accumulate @ Array[f, 100] (* Amiram Eldar, Sep 05 2021 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, d^4<=k));
    
  • PARI
    N=99; x='x+O('x^N); Vec(sum(k=1, N^(1/4), x^k^4/(1-x^k))/(1-x))

Formula

G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k^4)/(1 - x^k).

A212597 Number of ways of writing n in the form i*j+k*m with 0

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 5, 5, 7, 9, 10, 11, 14, 15, 16, 19, 20, 23, 24, 27, 28, 33, 30, 37, 36, 42, 40, 48, 44, 53, 49, 57, 55, 65, 55, 72, 64, 74, 70, 83, 72, 90, 77, 95, 87, 102, 84, 112, 94, 112, 104, 124, 102, 133, 109, 135, 123, 142, 117, 160, 128, 152, 138
Offset: 1

Views

Author

John W. Layman, May 22 2012

Keywords

Examples

			1*1+1*4 = 1*2+1*3 = 1*1+2*2 = 5, so a(5) = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) local j, l, m;
          add(add(add(`if`(j is(h>=sqrt(n-l)), divisors(n-l))),
          j=select(h-> is(h>=sqrt(l)), divisors(l))), l=1..n-1)
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 24 2012
  • Mathematica
    a[n_] := Sum[Sum[Sum[If[j < m || j == m && l*m < (n-l)*j, 1, 0], {m, Select[Divisors[n-l], # >= Sqrt[n-l]&]}], {j, Select[Divisors[l], # >= Sqrt[l]&]}], {l, 1, n-1}];
    Array[a, 100] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)

A255315 Lower triangular matrix describing the shape of a half hyperbola in the Dirichlet divisor problem.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 0, 2, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, May 31 2015

Keywords

Comments

The sum of terms of row n is n. Length of row n is n.
From Mats Granvik, Feb 21 2016: (Start)
A006218(n) = (n^2 - ((2*Sum_{kk=1..n} Sum_{k=1..kk} T(n,k)) - n)) + 2*n - round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n))).
A006218(n) = -((n^2 - ((2*Sum_{kk=1..n} Sum_{k=1..kk} T(n,n-k+1)) - n)) - 2*n + round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n)))).
(End)
From Mats Granvik, May 28 2017: (Start)
A006218(n) = (n^2 - (2*(Sum_{k=1..n} T(n, k)*(n - k + 1)) - n)) + 2*n - round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n))).
A006218(n) = -((n^2 - (2*(Sum_{k=1..n} T(n, n - k + 1)*(n - k + 1)) - n)) - 2*n + round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n)))).
(End)
From Mats Granvik, Sep 07 2017: (Start)
It appears that:
The number of 0's in row n is equal to the number of 2's in row n and their number is given by A000196(n) - 1.
The number of 1's in column k is given by A152948(k+2).
The number of 2's in column k is given by A000096(k-1).
The row index of the last nonzero entry in column k is given by A005563(k).
(End)
From Mats Granvik, Oct 06 2018: (Start)
The smallest k such that T(n,k)=2 is given by A079643(n) = floor(n/floor(sqrt(n))).
This gives the lower bound: A006218(n) >= A094761(n) + A079643(n)*2*(A000196(n)-1).
<=> A006218(n) >= 2*n - (floor(sqrt(n)))^2 + floor(n/floor(sqrt(n)))*2*floor(sqrt(n)-1).
The average of k:s such that T(n,k)=2, for n>3 is given by:
b(n) = Sum_{k=1..n} (k*floor(abs(T(n, k)-1/2)))/floor(sqrt(n)-1).
This gives A006218(n) = 2*n - (floor(sqrt(n)))^2 + b(n)*2*floor(sqrt(n)-1) = 2*n - (floor(sqrt(n)))^2 + (Sum_{k=1..n} (k*floor(abs(T(n, k)-1/2))))*2, for n>3.
The largest k such that T(n,k)=2 is given by A004526(n) = floor(n/2).
This gives the upper bound: A006218(n) <= A094761(n) + A004526(n)*2*(A000196(n)-1).
<=> A006218(n) <= 2*n - (floor(sqrt(n)))^2 + floor(n/2)*2*floor(sqrt(n)-1).
The lower bound starts: 1, 3, 5, 8, 10, 14, 16, 20, 21, 23, ...
Sequence A006218 starts: 1, 3, 5, 8, 10, 14, 16, 20, 23, 27, ...
The upper bound starts: 1, 3, 5, 8, 10, 14, 16, 20, 25, 31, ...
(End)

Examples

			1;
1, 1;
1, 1, 1;
0, 2, 1, 1;
0, 2, 1, 1, 1;
0, 1, 2, 1, 1, 1;
0, 1, 2, 1, 1, 1, 1;
0, 1, 1, 2, 1, 1, 1, 1;
0, 0, 2, 2, 1, 1, 1, 1, 1;
0, 0, 2, 1, 2, 1, 1, 1, 1, 1;
0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1;
0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • Mathematica
    (* From Mats Granvik, Feb 21 2016: (Start) *)
    nn = 12;
    T = Table[
       Sum[Table[
         If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,
           If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,
           1, r}], {k, 1, r}], {r, 1, nn}];
    Flatten[T]
    A006218a = Table[(n^2 - (2*Sum[Sum[T[[n, k]], {k, 1, kk}], {kk, 1, n}] -
            n)) + 2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n,
         1, nn}];
    A006218b = -Table[(n^2 - (2*
              Sum[Sum[T[[n, n - k + 1]], {k, 1, kk}], {kk, 1, n}] - n)) -
         2*n + Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];
    (A006218b - A006218a);
    (* (End) *)
    (* From Mats Granvik, May 28 2017: (Start) *)
    nn = 12;
    T = Table[
       Sum[Table[
         If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,
           If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,
           1, r}], {k, 1, r}], {r, 1, nn}];
    Flatten[T]
    A006218a = Table[(n^2 - (2*Sum[T[[n, k]]*(n - k + 1), {k, 1, n}] - n)) +
        2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];
    A006218b = Table[-((n^2 - (2*Sum[T[[n, n - k + 1]]*(n - k + 1), {k, 1, n}] -
              n)) - 2*n +
          Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])]), {n, 1, nn}];
    (A006218b - A006218a);
    (* (End) *)

Formula

See Mathematica program.
Previous Showing 11-16 of 16 results.