A211275
Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= floor(n/2).
Original entry on oeis.org
0, 1, 1, 2, 2, 3, 3, 5, 5, 6, 6, 8, 8, 9, 9, 11, 11, 13, 13, 15, 15, 16, 16, 19, 19, 20, 20, 22, 22, 24, 24, 27, 27, 28, 28, 31, 31, 32, 32, 35, 35, 37, 37, 39, 39, 40, 40, 44, 44, 46, 46, 48, 48, 50, 50, 53, 53, 54, 54, 58, 58, 59, 59, 62, 62, 64, 64, 66, 66, 68, 68
Offset: 1
-
a = 1; b = n; z1 = 120;
t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
{y, x, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
Table[c[n, n], {n, 1, z1}] (* A038548 *)
Table[c[n, n + 1], {n, 1, z1}] (* A072670 *)
Table[c[n, 2*n], {n, 1, z1}] (* A211270 *)
Table[c[n, 3*n], {n, 1, z1}] (* A211271 *)
Table[c[n, Floor[n/2]], {n, 1, z1}] (* A211272 *)
c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
Print
Table[c1[n, n], {n, 1, z1}] (* A094820 *)
Table[c1[n, n + 1], {n, 1, z1}] (* A091627 *)
Table[c1[n, 2*n], {n, 1, z1}] (* A211273 *)
Table[c1[n, 3*n], {n, 1, z1}] (* A211274 *)
Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
Original entry on oeis.org
2, 4, 6, 10, 12, 16, 18, 22, 26, 30, 32, 38, 40, 44, 48, 54, 56, 62, 64, 70, 74, 78, 80, 88, 92, 96, 100, 106, 108, 116, 118, 124, 128, 132, 136, 146, 148, 152, 156, 164, 166, 174, 176, 182, 188, 192, 194, 204, 208, 214, 218, 224, 226, 234, 238, 246
Offset: 1
-
Accumulate[2*Ceiling[DivisorSigma[0, Range[100]]/2]] (* Paolo Xausa, Feb 05 2025 *)
-
a(n) = sum(i=1, n, floor(n/i)) + sqrtint(n) \\ David A. Corneth, Dec 17 2020
-
first(n) = {my(res = vector(n), t = 0); for(i = 1, n, t+=(numdiv(i)+issquare(i)); res[i] = t ); res } \\ David A. Corneth, Dec 17 2020
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 40, 41, 44, 45, 47, 49, 51, 52, 55, 56, 58, 60, 62, 63, 66, 67, 69, 71, 73, 74, 77, 78, 80, 82, 84, 85, 88, 89, 91, 93, 95, 96, 99, 100, 102, 104, 107, 108, 111, 112, 115, 117, 119, 120, 124, 125, 127, 129, 132, 133, 136
Offset: 1
-
f[n_] := DivisorSum[n, 1 &, # <= n^(1/3) &]; Accumulate @ Array[f, 100] (* Amiram Eldar, Sep 04 2021 *)
-
N=99; x='x+O('x^N); Vec(sum(k=1, N^(1/3), x^k^3/(1-x^k))/(1-x))
-
a(n) = sum(k=1, n, sumdiv(k, d, d^3<=k)); \\ Michel Marcus, Sep 05 2021
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 20, 21, 23, 24, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102
Offset: 1
-
f[n_] := DivisorSum[n, 1 &, # <= n^(1/4) &]; Accumulate @ Array[f, 100] (* Amiram Eldar, Sep 05 2021 *)
-
a(n) = sum(k=1, n, sumdiv(k, d, d^4<=k));
-
N=99; x='x+O('x^N); Vec(sum(k=1, N^(1/4), x^k^4/(1-x^k))/(1-x))
A212597
Number of ways of writing n in the form i*j+k*m with 0
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 5, 5, 7, 9, 10, 11, 14, 15, 16, 19, 20, 23, 24, 27, 28, 33, 30, 37, 36, 42, 40, 48, 44, 53, 49, 57, 55, 65, 55, 72, 64, 74, 70, 83, 72, 90, 77, 95, 87, 102, 84, 112, 94, 112, 104, 124, 102, 133, 109, 135, 123, 142, 117, 160, 128, 152, 138
Offset: 1
1*1+1*4 = 1*2+1*3 = 1*1+2*2 = 5, so a(5) = 3.
-
with(numtheory):
a:= proc(n) local j, l, m;
add(add(add(`if`(j is(h>=sqrt(n-l)), divisors(n-l))),
j=select(h-> is(h>=sqrt(l)), divisors(l))), l=1..n-1)
end:
seq(a(n), n=1..100); # Alois P. Heinz, May 24 2012
-
a[n_] := Sum[Sum[Sum[If[j < m || j == m && l*m < (n-l)*j, 1, 0], {m, Select[Divisors[n-l], # >= Sqrt[n-l]&]}], {j, Select[Divisors[l], # >= Sqrt[l]&]}], {l, 1, n-1}];
Array[a, 100] (* Jean-François Alcover, Mar 27 2017, after Alois P. Heinz *)
A255315
Lower triangular matrix describing the shape of a half hyperbola in the Dirichlet divisor problem.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 0, 2, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1
1;
1, 1;
1, 1, 1;
0, 2, 1, 1;
0, 2, 1, 1, 1;
0, 1, 2, 1, 1, 1;
0, 1, 2, 1, 1, 1, 1;
0, 1, 1, 2, 1, 1, 1, 1;
0, 0, 2, 2, 1, 1, 1, 1, 1;
0, 0, 2, 1, 2, 1, 1, 1, 1, 1;
0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1;
0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1;
-
(* From Mats Granvik, Feb 21 2016: (Start) *)
nn = 12;
T = Table[
Sum[Table[
If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,
If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,
1, r}], {k, 1, r}], {r, 1, nn}];
Flatten[T]
A006218a = Table[(n^2 - (2*Sum[Sum[T[[n, k]], {k, 1, kk}], {kk, 1, n}] -
n)) + 2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n,
1, nn}];
A006218b = -Table[(n^2 - (2*
Sum[Sum[T[[n, n - k + 1]], {k, 1, kk}], {kk, 1, n}] - n)) -
2*n + Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];
(A006218b - A006218a);
(* (End) *)
(* From Mats Granvik, May 28 2017: (Start) *)
nn = 12;
T = Table[
Sum[Table[
If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,
If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,
1, r}], {k, 1, r}], {r, 1, nn}];
Flatten[T]
A006218a = Table[(n^2 - (2*Sum[T[[n, k]]*(n - k + 1), {k, 1, n}] - n)) +
2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];
A006218b = Table[-((n^2 - (2*Sum[T[[n, n - k + 1]]*(n - k + 1), {k, 1, n}] -
n)) - 2*n +
Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])]), {n, 1, nn}];
(A006218b - A006218a);
(* (End) *)
Comments