cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A095371 Number of distinct prime factors of record setting repunits (A328899).

Original entry on oeis.org

0, 1, 2, 5, 7, 8, 10, 13, 14, 20, 21, 22, 26, 29, 32, 33, 34, 35, 40, 44, 55, 56, 63
Offset: 1

Views

Author

Labos Elemer, Jun 04 2004

Keywords

Comments

Conjecture: a(24) = 73, a(25) = 94, a(26) = 99, a(27) >= 107, a(28) >= 127, a(29) >= 136, a(30) >= 140, a(31) >= 151, a(32) >= 159, a(33) >= 163, a(34) >= 178, a(35) >= 184, a(36) >= 213, a(37) >= 214. - Chai Wah Wu, Nov 01 2019

Crossrefs

Programs

Extensions

Data corrected by Ray Chandler and N. J. A. Sloane, May 03 2017
Name edited by Giovanni Resta, Oct 30 2019
a(20)-a(21) from Chai Wah Wu, Oct 30 2019
a(22)-a(23) from Chai Wah Wu, Nov 01 2019

A095417 Sum of all decimal digits of distinct prime factors for n-th repunit.

Original entry on oeis.org

0, 2, 13, 4, 15, 26, 37, 25, 41, 36, 45, 47, 62, 67, 57, 67, 60, 92, 19, 76, 116, 99, 23, 105, 63, 120, 124, 134, 133, 110, 140, 155, 141, 130, 132, 168, 137, 103, 184, 176, 182, 226, 188, 217, 168, 145, 186, 220, 245, 170, 221, 228, 232, 267, 216, 225, 179, 259
Offset: 1

Views

Author

Labos Elemer, Jun 22 2004

Keywords

Examples

			n=60: concatenated distinct-prime factor-set for 60th-repunit is:
371113313741611012112412712161354190919901279612906161418890139526741,
its digit sum=a(60)=244.
		

Crossrefs

Programs

  • Mathematica
    a[1]=0; a[n_] := Total[ Flatten[ IntegerDigits /@ First /@ FactorInteger[(10^n - 1)/9]]]; Array[a, 60] (* Giovanni Resta, Jul 19 2018 *)

Formula

a(n) = A095402(A002275(n)).

Extensions

Data corrected by Giovanni Resta, Jul 19 2018

A095415 Length of repunits of which the prime factor-digit-excess computed by A095414 equals 0.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 27, 31, 47, 59, 67, 71, 83, 113, 127, 139, 163, 197, 211, 229, 251, 263, 311, 317, 347, 421, 457, 461
Offset: 1

Views

Author

Labos Elemer, Jun 22 2004

Keywords

Comments

541, 701, 857 are also terms. Conjecture: Except for the number 4, A046413 is a subsequence. Conjecture: except for the prime powers 9 and 27, all terms are prime. - Chai Wah Wu, Nov 03 2019
Sequence continues as 467?, 479?, 509?, 541, 557?, 571?, 577?, 593?, 599?, 617?, 643?, 647?, 661?, 673?, 683?, 691?, 701, 727?, 743?, 751?, 757?, 769?, 773?, 821?, 857, 863?, 887?, 911?, 967?, 971?, 977?, 991?, where ? marks uncertain/candidate terms. - Max Alekseyev, Apr 29 2022

Crossrefs

A004023 is a subsequence.

Programs

  • Mathematica
    d[1] = -1; d[n_] := Total[ IntegerLength /@ First /@ FactorInteger[(10^n - 1)/9]] - n; Select[ Range[67], d[#] == 0 &] (* Giovanni Resta, Jul 16 2018 *)

Formula

Solutions to A095414(x) = 0.

Extensions

Data corrected and extended by Giovanni Resta, Jul 16 2018
a(29)-a(32) confirmed by Max Alekseyev, Apr 29 2022

A095416 Length of smallest repunit of which the prime factor-digit-excess computed by A095414 equals n.

Original entry on oeis.org

2, 4, 6, 12, 24, 32, 30, 80, 96, 60, 84, 126, 120, 200, 168, 264, 210, 252
Offset: 0

Views

Author

Labos Elemer, Jun 22 2004

Keywords

Comments

a(18), a(19) > 322. a(20) = 300. - Giovanni Resta, Jul 19 2018
a(A095371(n)-1) >= A328899(n). a(18) <= 440, a(19) <= 336, a(21) <= 624, a(22) <= 560, a(23) <= 480, a(24) <= 540, a(25) <= 720, a(26) <= 612, a(27) <= 420, a(28) <= 600, a(30) = 1050, a(31) <= 660, a(32) <= 1400, a(33) <= 900, a(34) <= 1020, a(35) <= 1500, a(36) <= 1380, a(37) <= 840, a(48) <= 1260, a(50) <= 1680. - Chai Wah Wu, Nov 03 2019

Examples

			n=60: concatenated p-set for 60th-repunit is:
371113313741611012112412712161354190919901279612906161418890139526741,
its length=69, so excess=9, 60 is the smallest such repunit
		

Crossrefs

Formula

a(n) = Min{x; A095414(x)=n}.

Extensions

Edited by Charles R Greathouse IV, Aug 03 2010
Data corrected and extended by Giovanni Resta, Jul 19 2018
a(0) from Chai Wah Wu, Nov 03 2019

A328899 Numbers k such that the k-th repunit (10^k-1)/9 sets a new record for the number of distinct prime factors.

Original entry on oeis.org

1, 2, 3, 6, 12, 18, 24, 30, 42, 60, 84, 96, 120, 168, 180, 210, 240, 252, 300, 360, 420, 630, 660
Offset: 1

Views

Author

Giovanni Resta, Oct 30 2019

Keywords

Comments

The corresponding numbers of distinct prime factors are in A095371.
a(20) > 322.
From Chai Wah Wu, Oct 30 2019: (Start)
Since A095371(19) = 40, to show that a(20) > 323 we use the fact that (10^323-1)/9 is a product of 4 primes and a 271-digit composite number C. We then use a computer search to show that C has no prime factor <= floor(C^(1/(41-4))) = 19858291. This implies that (10^323-1)/9 has less than 41 distinct prime factors.
Applying this same approach to 337 and 353 (the only numbers between 323 and 359 for which the complete factorization of the corresponding repunit is not known) and using the factorization of (10^360-1)/9 with 44 distinct prime factors show that a(20) = 360 and A095371(20) = 44.
This approach also shows that a(21) = 420 and A095371(21) = 55. (End)
a(24) <= 840. Conjecture: a(24) = 840, a(25) = 1260, a(26) = 1680, a(27) = 1980, a(28) = 2520, a(29) = 3360, a(30) = 3780, a(31) = 3960, a(32) = 4620, a(33) = 5040, a(34) = 6300, a(35) = 7560, a(36) = 9240, a(37) = 10080. - Chai Wah Wu, Nov 01 2019

Crossrefs

Programs

  • Mathematica
    r[n_] := (10^n - 1)/9; L = {}; bst = -1; Do[v = PrimeNu[r[n]]; If[v > bst, bst = v; AppendTo[L, n]], {n, 60}]; L
    (* or, based on the b-file of A095370: *)
    w = Last /@ Cases[Import["https://oeis.org/A095370/b095370.txt", "Table"], {_Integer, _Integer}]; L={}; bst=-1; Do[If[w[[j]] > bst, AppendTo[L, j]; bst = w[[j]]], {j, Length@w}]; L

Extensions

a(20)-a(21) from Chai Wah Wu, Oct 30 2019
a(22)-a(23) from Chai Wah Wu, Nov 01 2019

A086565 Smallest k such that (10^k - 1)/9 has n distinct prime divisors. Or a(n)= smallest value of k such that A000042(k) has exactly n distinct prime divisors.

Original entry on oeis.org

1, 2, 3, 9, 8, 6, 15, 12, 18, 45, 24, 32, 54, 30, 42, 64, 102, 72, 108, 154, 60, 84, 96, 140, 126, 200, 120, 204, 308, 168, 192, 280, 180, 210, 240, 252, 330
Offset: 0

Views

Author

Amarnath Murthy, Aug 31 2003

Keywords

Comments

a(40) = 300; all other subsequent terms are > 322. - Ray Chandler, Apr 23 2017
a(38) = 336. - Max Alekseyev, Apr 29 2022

Crossrefs

Programs

  • PARI
    a(n) = my(k=1); while(omega((10^k - 1)/9) !=n, k++); k; \\ Michel Marcus, Apr 23 2017

Extensions

Corrected and extended by Sascha Kurz, Sep 22 2003
a(12)-a(15) from David Wasserman, Mar 28 2005
a(16)-a(27) from Donovan Johnson, Nov 17 2008
a(28)-a(35) from Ray Chandler, Apr 23 2017
a(36) from Max Alekseyev, Apr 29 2022

A095373 Integers k such that A095372(k) = 1 + 90*(-1+100^k)/99 is prime.

Original entry on oeis.org

2, 3, 8, 15, 26, 33, 146, 320, 1068, 1505
Offset: 1

Views

Author

Labos Elemer, Jun 07 2004

Keywords

Comments

a(11) > 40000. - Michael S. Branicky, Jan 06 2025

Examples

			Corresponding primes are: 9091, 909091, 909090909090909091, 909090909090909090909090909091, ...
		

Crossrefs

Programs

  • Mathematica
    {ta=Table[0, {100}], u=1}; Do[s=1+(90*(100^n-1)/99);If[PrimeQ[s], Print[{n, s}]; ta[[u]]=s;u=u+1], {n, 1, 320}] ta

Extensions

a(9)-a(10) from Max Alekseyev, Jan 28 2012

A268582 Sphenic numbers having identical digits.

Original entry on oeis.org

66, 222, 555, 777, 2222, 3333, 5555, 7777, 22222, 33333, 55555, 77777, 2222222, 3333333, 5555555, 7777777, 22222222222, 33333333333, 55555555555, 77777777777, 1111111111111, 22222222222222222, 33333333333333333, 55555555555555555, 77777777777777777, 6666666666666666666
Offset: 1

Views

Author

Michel Lagneau, Feb 07 2016

Keywords

Comments

Subsequence of A007304 (sphenic numbers: products of 3 distinct primes).
a(1)= A087331(4).

Examples

			222 is in the sequence because 222 = 2*3*37, product of 3 distinct primes.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    for n from 1 to 23 do:
      for b from 1 to 9 do:
        x:=(((10^n)- 1)/9)*b:y:=factorset(x):n1:=nops(y):
         if bigomega(x)=3 and n1=3
          then
          printf(`%d, `,x):
          else
         fi:
       od:
    od:
  • Mathematica
    Select[Flatten@ Map[Map[Function[k, FromDigits@ Table[k, {#}]], Range[1, 9]] &, Range@ 20], Length@ # == 3 && Times @@ Last /@ # == 1 &@ FactorInteger@ # &] (* Michael De Vlieger, Feb 07 2016 *)
Previous Showing 11-18 of 18 results.